메뉴 건너뛰기




Volumn 2442, Issue , 2014, Pages 106-116

Virtual sensors: Web-based real-time data collection methodology for transportation operation performance analysis

Author keywords

[No Author keywords available]

Indexed keywords

INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; TOLL HIGHWAYS; TRAFFIC CONTROL; TRAVEL TIME;

EID: 84938675045     PISSN: 03611981     EISSN: 21694052     Source Type: Journal    
DOI: 10.3141/2442-12     Document Type: Review
Times cited : (28)

References (53)
  • 1
    • 84861473762 scopus 로고    scopus 로고
    • Aspen Institute, Washington, D.C
    • Rollier, D The Promise and Peril ofBig Data. Aspen Institute, Washington, D.C., 2010. http://www.emc.com/collaleral/analyst-reports/l0334-ai-promise-peril-of-big-data.pdf.
    • (2010) The Promise and Peril OfBig Data
    • Rollier, D.1
  • 2
    • 84871857828 scopus 로고    scopus 로고
    • Big data: The management revolution
    • McAfee, A., and E. Brynjolfsson. Big Data: The Management Revolution. Hanard Business Review, Vol. 90, No. 10, 2012. pp. 60-66.
    • (2012) Hanard Business Review , vol.90 , Issue.10 , pp. 60-66
    • McAfee, A.1    Brynjolfsson, E.2
  • 3
    • 83455179027 scopus 로고    scopus 로고
    • Are you ready for the era of big data?
    • Brown, B.. M. Cliui, and J. Manyika. Are You Ready for the Era of Big Data? McKinsey Quarterly, Vol. 4, 2011, pp. 24-35.
    • (2011) McKinsey Quarterly , vol.4 , pp. 24-35
    • Brown, B.1    Cliui, M.2    Manyika, J.3
  • 4
    • 84987788972 scopus 로고    scopus 로고
    • Clouds, big data, and smart assets: Ten tech-enabled business trends to watch
    • Bughin, J., M. Chui, and J. Manyika. Clouds, Big Data, and Smart Assets: Ten Tech-Enabled Business Trends to Watch. McKinsey Quarterly. Vol.4. 2010, pp. 26-43.
    • (2010) McKinsey Quarterly , vol.4 , pp. 26-43
    • Bughin, J.1    Chui, M.2    Manyika, J.3
  • 6
    • 84865030017 scopus 로고    scopus 로고
    • Big data and city living-what can it do for us?
    • Keller, A., S.E. Koonin, and S. Shipp. Big Data and City Living-What Can It Do for Us? Significance, Vol 9, No. 4. 2012. pp. 4-7.
    • (2012) Significance , vol.9 , Issue.4 , pp. 4-7
    • Keller, A.1    Koonin, S.E.2    Shipp, S.3
  • 8
    • 84925606709 scopus 로고    scopus 로고
    • June, Accessed July 23, 2013
    • Ovide, S. Tapping "Big Data" to Fill Potholes. Dallas Mobility. June 2012. http://dallasmobility.org/Newsroom/6-12-12%20WSJ%7r20-%20Tapping20big%20data%720to%20fill%20potholes.pdf. Accessed July 23, 2013.
    • (2012) Tapping "Big Data" to Fill Potholes
    • Ovide, S.1
  • 10
    • 33846470034 scopus 로고    scopus 로고
    • Travel time estimation with correlation analysis of single loop detector data
    • Transportation Research Board of the National Academies. Washington. D C
    • Guo, H and J. Jin. Travel Time Estimation with Correlation Analysis of Single Loop Detector Data. In Transportation Research Record: Journal of the Transportation Research Board, No. 1968. Transportation Research Board of the National Academies. Washington. D C., 2006, pp. 10-19.
    • (2006) Transportation Research Record: Journal of the Transportation Research Board, No. 1968 , pp. 10-19
    • Guo, H.1    Jin, J.2
  • 11
    • 0034784302 scopus 로고    scopus 로고
    • The PeMS algorithms for accurate, real-time estimates of g-factors and speeds from single- loop detectors
    • Oakland. Calif
    • Jia, Z. C. Chen, B. Coifman and P. Varaiya. The PeMS Algorithms for Accurate, Real-Time Estimates of g-Factors and Speeds from Single- Loop Detectors. Proc. 4th Intelligent Transportation Systems Conference. Oakland. Calif., 2001.
    • (2001) Proc. 4th Intelligent Transportation Systems Conference
    • Jia, Z.1    Chen, C.2    Coifman, B.3    Varaiya, P.4
  • 14
    • 84877622657 scopus 로고    scopus 로고
    • Urban link travel time estimation based on sparse probe vehicle data
    • Zheng, F., and H. V. Zuylen. Urban Link Travel Time Estimation Based on Sparse Probe Vehicle Data. Transportation Research Part C. Vol. 31. 2012, pp. 145-157.
    • (2012) Transportation Research Part C , vol.31 , pp. 145-157
    • Zheng, F.1    Zuylen, H.V.2
  • 15
    • 77950949269 scopus 로고    scopus 로고
    • Kalman filter approach to speed estimation using single loop detector measurements under congested conditions
    • Guo, J., J. Xia, and B.L. Smith. Kalman Filter Approach to Speed Estimation Using Single Loop Detector Measurements Under Congested Conditions. Journal of Transportation Engineering. Vol. 135, 2009, pp. 927-934.
    • (2009) Journal of Transportation Engineering , vol.135 , pp. 927-934
    • Guo, J.1    Xia, J.2    Smith, B.L.3
  • 16
    • 85172841421 scopus 로고    scopus 로고
    • Advanced Traffic Analysis Center. North Dakota Department of Transportation, Bismarck
    • Non-Intrusive Traffic Detection Comparison Study Final Report. Advanced Traffic Analysis Center. North Dakota Department of Transportation, Bismarck. 2009.
    • (2009) Non-Intrusive Traffic Detection Comparison Study Final Report
  • 18
    • 33645990149 scopus 로고    scopus 로고
    • FHWA/TX-03/2119-1. Texas A&M Transportation Institute, Texas A&M University System, Austin
    • Middleton, D., and R. Parker. Vehicle Detector Evaluation. FHWA/TX-03/2119-1. Texas A&M Transportation Institute, Texas A&M University System, Austin. 2002.
    • (2002) Vehicle Detector Evaluation
    • Middleton, D.1    Parker, R.2
  • 23
    • 25844460660 scopus 로고    scopus 로고
    • An efficient method of license plate location
    • Zheng, D.N., Y.N. Zhao, and J.X. Wang. An Efficient Method of License Plate Location. Pattern Recognition Letters. Vol. 26, No. 15, 2005, pp. 2431-2438.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.15 , pp. 2431-2438
    • Zheng, D.N.1    Zhao, Y.N.2    Wang, J.X.3
  • 25
    • 84879849514 scopus 로고    scopus 로고
    • A novel approach to implement green wave system and detection of stolen vehicles
    • Ghaziabad. India, IEEE, New York
    • Mittal, A. K and D. Bhandari. A Novel Approach to Implement Green Wave System and Detection of Stolen Vehicles. Proc. 3rd International Advance Computing Conference, Ghaziabad. India, IEEE, New York, 2013, pp. 1055-1059.
    • (2013) Proc. 3rd International Advance Computing Conference , pp. 1055-1059
    • Mittal, A.K.1    Bhandari, D.2
  • 28
    • 78651268880 scopus 로고    scopus 로고
    • Real-time measurement of travel time delay in work zones and evaluation metrics using bluetooth probe tracking
    • Transportation Research Board of the National Academies, Washington, D C
    • Haseman, R.J., J.S. Wasson, and D. M. Bullock. Real-Time Measurement of Travel Time Delay in Work Zones and Evaluation Metrics Using Bluetooth Probe Tracking. In Transportation Research Record: Journal of the Transportation Research Board, No. 2169. Transportation Research Board of the National Academies, Washington, D C., 2010, pp. 40-53.
    • (2010) Transportation Research Record: Journal of the Transportation Research Board, No. 2169 , pp. 40-53
    • Haseman, R.J.1    Wasson, J.S.2    Bullock, D.M.3
  • 29
    • 85172855104 scopus 로고    scopus 로고
    • Commercial remote sensing and spatial information technologies for reliable transportation systems
    • Research and Innovative Technology Administration, U.S. Department of Transportation
    • Pulugurtha, S.S V. R. Duddu, S. Imran, P. Najaf, and Z. Reza. Commercial Remote Sensing and Spatial Information Technologies for Reliable Transportation Systems. Draft Synthesis Report on Literature Review. Research and Innovative Technology Administration, U.S. Department of Transportation, 2013.
    • (2013) Draft Synthesis Report on Literature Review
    • Pulugurtha, S.S.1    Duddu, V.R.2    Imran, S.3    Najaf, P.4    Reza, Z.5
  • 30
    • 84857013048 scopus 로고    scopus 로고
    • Innovative real-time methodology for detecting travel time outliers on interstate highways and urban arterials
    • Transportation Research Board of the National Academies, Washington, D.C
    • Van Boxel, D., W. H. Schneider , and C. Bakula. Innovative Real-Time Methodology for Detecting Travel Time Outliers on Interstate Highways and Urban Arterials. In Transportation Research Record: Journal of the Transportation Research Board, No. 2256. Transportation Research Board of the National Academies, Washington, D.C., 2011, pp. 60-67.
    • (2011) Transportation Research Record: Journal of the Transportation Research Board, No. 2256 , pp. 60-67
    • Van Boxel, D.1    Schneider, W.H.2    Bakula, C.3
  • 34
    • 84977829465 scopus 로고    scopus 로고
    • Traffic accident detection by using machine learning methods
    • Sarajevo, Bosnia and Herzegovina
    • Dogru, N., and A. Subasi. Traffic Accident Detection by Using Machine Learning Methods. Proc. 3rd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina, 2012, pp. 468-474.
    • (2012) Proc. 3rd International Symposium on Sustainable Development , pp. 468-474
    • Dogru, N.1    Subasi, A.2
  • 38
    • 84859375466 scopus 로고    scopus 로고
    • Estimating O-D travel time matrix by google maps API: Implementation, advantages, and implications
    • Wang, F and X. Yanqing. Estimating O-D Travel Time Matrix by Google Maps API: Implementation, Advantages, and Implications. Annals of CIS. Vol. 17, No. 4, 2011, pp. 199-209.
    • (2011) Annals of CIS , vol.17 , Issue.4 , pp. 199-209
    • Wang, F.1    Yanqing, X.2
  • 39
    • 79961073112 scopus 로고    scopus 로고
    • An interactive web-based system for urban traffic data analysis
    • Wu, Y.J., and Y. Wang. An Interactive Web-Based System for Urban Traffic Data Analysis. International Journal of Web Applications, Vol. 1, No. 3, 2009, pp. 115-125.
    • (2009) International Journal of Web Applications , vol.1 , Issue.3 , pp. 115-125
    • Wu, Y.J.1    Wang, Y.2
  • 42
    • 85172855900 scopus 로고    scopus 로고
    • Accessed July 20, 2013
    • Thomas, D J. Lawrence, and J. Rettig. T.R.A.F.F.I.C. 2012. http://www.jacobrettig.com/sites/default/non-drupal/668/GIGps/TRAFFIC.pdf. Accessed July 20, 2013.
    • (2012) T.R.A.F.F.I.C.
    • Thomas, D.1    Lawrence, J.2    Rettig, J.3
  • 44
    • 79955757514 scopus 로고    scopus 로고
    • The use of twitter to track levels of disease activity and public concern in the U.S. During the influenza A HI NI pandemic
    • Signorini, A., A. M. Scgre, and P. M. Polgreen. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. During the Influenza A HI NI Pandemic. PLoS ONE. Vol. 6, No. 5, 2011.
    • (2011) PLoS ONE , vol.6 , Issue.5
    • Signorini, A.1    Scgre, A.M.2    Polgreen, P.M.3
  • 45
    • 85172848586 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • Nokia HERE Maps, http://developer.here.com/documentation. Accessed July 23, 2013.
    • Nokia HERE Maps
  • 46
    • 77952864393 scopus 로고    scopus 로고
    • Microsoft Corporation
    • Bing Maps. Microsoft Corporation, http://www.bing.com/dev/en-us/dev-center.
    • Bing Maps
  • 47
    • 51049104264 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • Google Maps, https://developers.google.com. Accessed July 23, 2013.
    • Google Maps
  • 48
    • 85172847141 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • MapQuest. http://www.mapquest.com. Accessed July 23, 2013.
    • MapQuest
  • 49
    • 85172835048 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • NEXTbus. http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf. Accessed July 23, 2013.
    • NEXTbus
  • 50
    • 85172831905 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • TomToni. http://devcloper.tomtom.com/. Accessed July 23, 2013.
    • TomToni
  • 51
    • 85172852560 scopus 로고    scopus 로고
    • Accessed July 23, 2013
    • INRIX DevZone. http://www.inrix.com/devzone.asp. Accessed July 23, 2013.
    • INRIX DevZone
  • 52
    • 85172842889 scopus 로고    scopus 로고
    • Accessed July 19, 2013
    • INRIX Differentiate, http://www.inrix.com/differentiate.asp. Accessed July 19, 2013.
    • Differentiate
    • INRIX1
  • 53
    • 84874028020 scopus 로고    scopus 로고
    • Evaluation of technologies for freeway travel time estimation: A case study of 1-287 in New Jersey
    • Presented at, Washington, D.C
    • Kim, K., S. I.-J. Chien, and L. Spasovic. Evaluation of Technologies for Freeway Travel Time Estimation: A Case Study of 1-287 in New Jersey. Presented at 90th Annual Meeting of the Transportation Research Board, Washington, D.C., 2011.
    • (2011) 90th Annual Meeting of the Transportation Research Board
    • Kim, K.1    Chien, S.I.-J.2    Spasovic, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.