-
1
-
-
38049180885
-
Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode
-
Balaji, J., and T.A. Ryan. 2007. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. USA. 104:20576-20581. http://dx.doi.org/10.1073/pnas.0707574105.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 20576-20581
-
-
Balaji, J.1
Ryan, T.A.2
-
2
-
-
0005541930
-
Association of actin filaments with axonal microtubule tracts
-
Bearer, E.L., and T.S. Reese. 1999. Association of actin filaments with axonal microtubule tracts. J. Neurocytol. 28:85-98. http://dx.doi.org/10.1023/A:1007025421849.
-
(1999)
J. Neurocytol
, vol.28
, pp. 85-98
-
-
Bearer, E.L.1
Reese, T.S.2
-
3
-
-
0031884084
-
Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons
-
Bernstein, B.W., M. DeWit, and J.R. Bamburg. 1998. Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons. Brain Res. Mol. Brain Res. 53:236-250. http://dx.doi.org/10.1016/S0169-328X(97)00319-7.
-
(1998)
Brain Res. Mol. Brain Res
, vol.53
, pp. 236-250
-
-
Bernstein, B.W.1
DeWit, M.2
Bamburg, J.R.3
-
4
-
-
0018577097
-
Axonal transport of actin: slow component b is the principal source of actin for the axon
-
Black, M.M., and R.J. Lasek. 1979. Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res. 171:401-413. http://dx.doi.org/10.1016/0006-8993(79)91045-X.
-
(1979)
Brain Res
, vol.171
, pp. 401-413
-
-
Black, M.M.1
Lasek, R.J.2
-
5
-
-
70249095621
-
Myosin motor proteins in the cell biology of axons and other neuronal compartments
-
Bridgman, P.C. 2009. Myosin motor proteins in the cell biology of axons and other neuronal compartments. Results Probl. Cell Differ. 48:91-105.
-
(2009)
Results Probl. Cell Differ
, vol.48
, pp. 91-105
-
-
Bridgman, P.C.1
-
6
-
-
0028244823
-
Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin
-
Bubb, M.R., A.M. Senderowicz, E.A. Sausville, K.L. Duncan, and E.D. Korn. 1994. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269:14869-14871.
-
(1994)
J. Biol. Chem
, vol.269
, pp. 14869-14871
-
-
Bubb, M.R.1
Senderowicz, A.M.2
Sausville, E.A.3
Duncan, K.L.4
Korn, E.D.5
-
7
-
-
35649027944
-
Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin
-
Burkel, B.M., G. von Dassow, and W.M. Bement. 2007. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton. 64:822-832. http://dx.doi.org/10.1002/cm.20226.
-
(2007)
Cell Motil. Cytoskeleton
, vol.64
, pp. 822-832
-
-
Burkel, B.M.1
von Dassow, G.2
Bement, W.M.3
-
8
-
-
72949110575
-
Unleashing formins to remodel the actin and microtubule cytoskeletons
-
Chesarone, M.A., A.G. DuPage, and B.L. Goode. 2010. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 11:62-74. http://dx.doi.org/10.1038/nrm2816.
-
(2010)
Nat. Rev. Mol. Cell Biol
, vol.11
, pp. 62-74
-
-
Chesarone, M.A.1
DuPage, A.G.2
Goode, B.L.3
-
9
-
-
84886919727
-
Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation
-
Chia, P.H., P. Li, and K. Shen. 2013. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. J. Cell Biol. 203:11-22. http://dx.doi.org/10.1083/jcb.201307020.
-
(2013)
J. Cell Biol
, vol.203
, pp. 11-22
-
-
Chia, P.H.1
Li, P.2
Shen, K.3
-
10
-
-
84892742828
-
Local F-actin network links synapse formation and axon branching
-
Chia, P.H., B. Chen, P. Li, M.K. Rosen, and K. Shen. 2014. Local F-actin network links synapse formation and axon branching. Cell. 156:208-220. http://dx.doi.org/10.1016/j.cell.2013.12.009.
-
(2014)
Cell
, vol.156
, pp. 208-220
-
-
Chia, P.H.1
Chen, B.2
Li, P.3
Rosen, M.K.4
Shen, K.5
-
11
-
-
84887411194
-
The cell biology of synaptic specificity during development
-
Christensen, R., Z. Shao, and D.A. Colón-Ramos. 2013. The cell biology of synaptic specificity during development. Curr. Opin. Neurobiol. 23:1018-1026. http://dx.doi.org/10.1016/j.conb.2013.07.004.
-
(2013)
Curr. Opin. Neurobiol
, vol.23
, pp. 1018-1026
-
-
Christensen, R.1
Shao, Z.2
Colón-Ramos, D.A.3
-
12
-
-
42349091996
-
Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy
-
Cingolani, L.A., and Y. Goda. 2008. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9:344-356. http://dx.doi.org/10.1038/nrn2373.
-
(2008)
Nat. Rev. Neurosci
, vol.9
, pp. 344-356
-
-
Cingolani, L.A.1
Goda, Y.2
-
13
-
-
0023427610
-
Effects of cytochalasin and phalloidin on actin
-
Cooper, J.A. 1987. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:1473-1478. http://dx.doi.org/10.1083/jcb.105.4.1473.
-
(1987)
J. Cell Biol
, vol.105
, pp. 1473-1478
-
-
Cooper, J.A.1
-
14
-
-
84924619572
-
STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons
-
D'Este, E., D. Kamin, F. Göttfert, A. El-Hady, and S.W. Hell. 2015. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Reports. 10:1246-1251. http://dx.doi.org/10.1016/j.celrep.2015.02.007.
-
(2015)
Cell Reports
, vol.10
, pp. 1246-1251
-
-
D'Este, E.1
Kamin, D.2
Göttfert, F.3
El-Hady, A.4
Hell, S.W.5
-
15
-
-
79960646720
-
The growth cone cytoskeleton in axon outgrowth and guidance
-
Dent, E.W., S.L. Gupton, and F.B. Gertler. 2011. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3:a001800. http://dx.doi.org/10.1101/cshperspect.a001800.
-
(2011)
Cold Spring Harb. Perspect. Biol
, vol.3
-
-
Dent, E.W.1
Gupton, S.L.2
Gertler, F.B.3
-
16
-
-
24144458246
-
The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis
-
El Meskini, R., L.B. Cline, B.A. Eipper, and G.V. Ronnett. 2005. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev. Neurosci. 27:333-348. http://dx.doi.org/10.1159/000086713.
-
(2005)
Dev. Neurosci
, vol.27
, pp. 333-348
-
-
El Meskini, R.1
Cline, L.B.2
Eipper, B.A.3
Ronnett, G.V.4
-
17
-
-
0023746711
-
Two classes of actin microfilaments are associated with the inner cytoskeleton of axons
-
Fath, K.R., and R.J. Lasek. 1988. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J. Cell Biol. 107:613-621. http://dx.doi.org/10.1083/jcb.107.2.613.
-
(1988)
J. Cell Biol
, vol.107
, pp. 613-621
-
-
Fath, K.R.1
Lasek, R.J.2
-
18
-
-
80053981518
-
Bulk cytoplasmic actin and its functions in meiosis and mitosis
-
Field, C.M., and P. Lénárt. 2011. Bulk cytoplasmic actin and its functions in meiosis and mitosis. Curr. Biol. 21:R825-R830. http://dx.doi.org/10.1016/j.cub.2011.07.043.
-
(2011)
Curr. Biol
, vol.21
, pp. R825-R830
-
-
Field, C.M.1
Lénárt, P.2
-
19
-
-
69749090329
-
Growth cone-like waves transport actin and promote axonogenesis and neurite branching
-
Flynn, K.C., C.W. Pak, A.E. Shaw, F. Bradke, and J.R. Bamburg. 2009. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev. Neurobiol. 69:761-779. http://dx.doi.org/10.1002/dneu.20734.
-
(2009)
Dev. Neurobiol
, vol.69
, pp. 761-779
-
-
Flynn, K.C.1
Pak, C.W.2
Shaw, A.E.3
Bradke, F.4
Bamburg, J.R.5
-
20
-
-
0034433063
-
Axonal transport of tubulin and actin
-
Galbraith, J.A., and P.E. Gallant. 2000. Axonal transport of tubulin and actin. J. Neurocytol. 29:889-911. http://dx.doi.org/10.1023/A:1010903710160.
-
(2000)
J. Neurocytol
, vol.29
, pp. 889-911
-
-
Galbraith, J.A.1
Gallant, P.E.2
-
21
-
-
84921274432
-
Using photoactivatable GFP to track axonal transport kinetics
-
Ganguly, A., and S. Roy. 2014. Using photoactivatable GFP to track axonal transport kinetics. Methods Mol. Biol. 1148:203-215. http://dx.doi.org/10.1007/978-1-4939-0470-9_13.
-
(2014)
Methods Mol. Biol
, vol.1148
, pp. 203-215
-
-
Ganguly, A.1
Roy, S.2
-
22
-
-
84898007288
-
Actin dynamics in growth cone motility and navigation
-
Gomez, T.M., and P.C. Letourneau. 2014. Actin dynamics in growth cone motility and navigation. J. Neurochem. 129:221-234. http://dx.doi.org/10.1111/jnc.12506.
-
(2014)
J. Neurochem
, vol.129
, pp. 221-234
-
-
Gomez, T.M.1
Letourneau, P.C.2
-
23
-
-
0035972165
-
Activation of the Arp2/3 complex by the actin filament binding protein Abp1p
-
Goode, B.L., A.A. Rodal, G. Barnes, and D.G. Drubin. 2001. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J. Cell Biol. 153:627-634. http://dx.doi.org/10.1083/jcb.153.3.627.
-
(2001)
J. Cell Biol
, vol.153
, pp. 627-634
-
-
Goode, B.L.1
Rodal, A.A.2
Barnes, G.3
Drubin, D.G.4
-
24
-
-
0026093409
-
Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles
-
Gotow, T., K. Miyaguchi, and P.H. Hashimoto. 1991. Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience. 40:587-598. http://dx.doi.org/10.1016/0306-4522(91)90143-C.
-
(1991)
Neuroscience
, vol.40
, pp. 587-598
-
-
Gotow, T.1
Miyaguchi, K.2
Hashimoto, P.H.3
-
25
-
-
1642361261
-
Actin polymerization-driven molecular movement of mDia1 in living cells
-
Higashida, C., T. Miyoshi, A. Fujita, F. Oceguera-Yanez, J. Monypenny, Y. Andou, S. Narumiya, and N. Watanabe. 2004. Actin polymerization-driven molecular movement of mDia1 in living cells. Science. 303:2007-2010. http://dx.doi.org/10.1126/science.1093923.
-
(2004)
Science
, vol.303
, pp. 2007-2010
-
-
Higashida, C.1
Miyoshi, T.2
Fujita, A.3
Oceguera-Yanez, F.4
Monypenny, J.5
Andou, Y.6
Narumiya, S.7
Watanabe, N.8
-
26
-
-
0020326774
-
Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method
-
Hirokawa, N. 1982. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94:129-142. http://dx.doi.org/10.1083/jcb.94.1.129.
-
(1982)
J. Cell Biol
, vol.94
, pp. 129-142
-
-
Hirokawa, N.1
-
27
-
-
0024595352
-
The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1
-
Hirokawa, N., K. Sobue, K. Kanda, A. Harada, and H. Yorifuji. 1989. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 108:111-126. http://dx.doi.org/10.1083/jcb.108.1.111.
-
(1989)
J. Cell Biol
, vol.108
, pp. 111-126
-
-
Hirokawa, N.1
Sobue, K.2
Kanda, K.3
Harada, A.4
Yorifuji, H.5
-
28
-
-
38949216802
-
Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy
-
Huang, B., W. Wang, M. Bates, and X. Zhuang. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 319:810-813. http://dx.doi.org/10.1126/science.1153529.
-
(2008)
Science
, vol.319
, pp. 810-813
-
-
Huang, B.1
Wang, W.2
Bates, M.3
Zhuang, X.4
-
29
-
-
0030690116
-
Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture
-
Jareb, M., and G. Banker. 1997. Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture. J. Neurosci. 17:8955-8963.
-
(1997)
J. Neurosci
, vol.17
, pp. 8955-8963
-
-
Jareb, M.1
Banker, G.2
-
30
-
-
84857836508
-
Short-term high-resolution imaging of developing hippocampal neurons in culture
-
Kaech, S., C.F. Huang, and G. Banker. 2012. Short-term high-resolution imaging of developing hippocampal neurons in culture. Cold Spring Harb Protoc. 2012:340-343
-
(2012)
Cold Spring Harb Protoc
, vol.2012
, pp. 340-343
-
-
Kaech, S.1
Huang, C.F.2
Banker, G.3
-
31
-
-
84938153168
-
Axonal actin in action: imaging actin dynamics in neurons
-
Ladt, K., A. Ganguly, and S. Roy. 2015. Axonal actin in action: imaging actin dynamics in neurons. Methods Cell Biol. http://dx.doi.org/10.1016/bs.mcb.2015.07.003.
-
(2015)
Methods Cell Biol
-
-
Ladt, K.1
Ganguly, A.2
Roy, S.3
-
32
-
-
0024002576
-
The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse
-
Landis, D.M., A.K. Hall, L.A. Weinstein, and T.S. Reese. 1988. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1: 201-209. http://dx.doi.org/10.1016/0896-6273(88)90140-7
-
(1988)
Neuron
, vol.1
, pp. 201-209
-
-
Landis, D.M.1
Hall, A.K.2
Weinstein, L.A.3
Reese, T.S.4
-
33
-
-
70249139885
-
Actin in axons: stable scaffolds and dynamic filaments
-
Letourneau, P.C. 2009. Actin in axons: stable scaffolds and dynamic filaments. Results Probl. Cell Differ. 48:65-90.
-
(2009)
Results Probl. Cell Differ
, vol.48
, pp. 65-90
-
-
Letourneau, P.C.1
-
34
-
-
33745801976
-
RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor
-
Loudon, R.P., L.D. Silver, H.F. Yee Jr., and G. Gallo. 2006. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J. Neurobiol. 66:847-867. http://dx.doi.org/10.1002/neu.20258.
-
(2006)
J. Neurobiol
, vol.66
, pp. 847-867
-
-
Loudon, R.P.1
Silver, L.D.2
Yee, H.F.3
Gallo, G.4
-
35
-
-
84903601874
-
Fluorogenic probes for live-cell imaging of the cytoskeleton
-
Lukinavicius, G., L. Reymond, E. D'Este, A. Masharina, F. Göttfert, H. Ta, A. Güther, M. Fournier, S. Rizzo, H. Waldmann, et al. 2014. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods. 11:731-733. http://dx.doi.org/10.1038/nmeth.2972.
-
(2014)
Nat. Methods
, vol.11
, pp. 731-733
-
-
Lukinavicius, G.1
Reymond, L.2
D'Este, E.3
Masharina, A.4
Göttfert, F.5
Ta, H.6
Güther, A.7
Fournier, M.8
Rizzo, S.9
Waldmann, H.10
-
36
-
-
84886645072
-
Spontaneous and evoked release are independently regulated at individual active zones
-
Melom, J.E., Y. Akbergenova, J.P. Gavornik, and J.T. Littleton. 2013. Spontaneous and evoked release are independently regulated at individual active zones. J. Neurosci. 33:17253-17263. http://dx.doi.org/10.1523/JNEUROSCI.3334-13.2013.
-
(2013)
J. Neurosci
, vol.33
, pp. 17253-17263
-
-
Melom, J.E.1
Akbergenova, Y.2
Gavornik, J.P.3
Littleton, J.T.4
-
37
-
-
79960718426
-
Building distinct actin filament networks in a common cytoplasm
-
Michelot, A., and D.G. Drubin. 2011. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21:R560-R569. http://dx.doi.org/10.1016/j.cub.2011.06.019.
-
(2011)
Curr. Biol
, vol.21
, pp. R560-R569
-
-
Michelot, A.1
Drubin, D.G.2
-
38
-
-
0033681170
-
Actin-dependent regulation of neurotransmitter release at central synapses
-
Morales, M., M.A. Colicos, and Y. Goda. 2000. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron. 27:539-550. http://dx.doi.org/10.1016/S0896-6273(00)00064-7.
-
(2000)
Neuron
, vol.27
, pp. 539-550
-
-
Morales, M.1
Colicos, M.A.2
Goda, Y.3
-
39
-
-
0033775855
-
Latrunculin alters the actin-monomer subunit interface to prevent polymerization
-
Morton, W.M., K.R. Ayscough, and P.J. McLaughlin. 2000. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2:376-378. http://dx.doi.org/10.1038/35014075.
-
(2000)
Nat. Cell Biol
, vol.2
, pp. 376-378
-
-
Morton, W.M.1
Ayscough, K.R.2
McLaughlin, P.J.3
-
40
-
-
84883431213
-
The actin cytoskeleton in presynaptic assembly
-
Nelson, J.C., A.K. Stavoe, and D.A. Colón-Ramos. 2013. The actin cytoskeleton in presynaptic assembly. Cell Adhes. Migr. 7:379-387. http://dx.doi.org/10.4161/cam.24803.
-
(2013)
Cell Adhes. Migr
, vol.7
, pp. 379-387
-
-
Nelson, J.C.1
Stavoe, A.K.2
Colón-Ramos, D.A.3
-
41
-
-
69249212192
-
Characterization of two classes of small molecule inhibitors of Arp2/3 complex
-
Nolen, B.J., N. Tomasevic, A. Russell, D.W. Pierce, Z. Jia, C.D. McCormick, J. Hartman, R. Sakowicz, and T.D. Pollard. 2009. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature. 460:1031-1034. http://dx.doi.org/10.1038/nature08231.
-
(2009)
Nature
, vol.460
, pp. 1031-1034
-
-
Nolen, B.J.1
Tomasevic, N.2
Russell, A.3
Pierce, D.W.4
Jia, Z.5
McCormick, C.D.6
Hartman, J.7
Sakowicz, R.8
Pollard, T.D.9
-
42
-
-
0025057070
-
Turnover of fluorescently labelled tubulin and actin in the axon
-
Okabe, S., and N. Hirokawa. 1990. Turnover of fluorescently labelled tubulin and actin in the axon. Nature. 343:479-482. http://dx.doi.org/10.1038/343479a0.
-
(1990)
Nature
, vol.343
, pp. 479-482
-
-
Okabe, S.1
Hirokawa, N.2
-
43
-
-
84906239598
-
ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging
-
Ovesnỳ, M., P. Krížek, J. Borkovec, Z. Svindrych, and G.M. Hagen. 2014. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 30:2389-2390. http://dx.doi.org/10.1093/bioinformatics/btu202.
-
(2014)
Bioinformatics
, vol.30
, pp. 2389-2390
-
-
Ovesnỳ, M.1
Krížek, P.2
Borkovec, J.3
Svindrych, Z.4
Hagen, G.M.5
-
44
-
-
79958075131
-
Spiretype actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division
-
Pfender, S., V. Kuznetsov, S. Pleiser, E. Kerkhoff, and M. Schuh. 2011. Spiretype actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr. Biol. 21:955-960. http://dx.doi.org/10.1016/j.cub.2011.04.029.
-
(2011)
Curr. Biol
, vol.21
, pp. 955-960
-
-
Pfender, S.1
Kuznetsov, V.2
Pleiser, S.3
Kerkhoff, E.4
Schuh, M.5
-
45
-
-
0033508898
-
Dynamics of tubulovesicular recycling endosomes in hippocampal neurons
-
Prekeris, R., D.L. Foletti, and R.H. Scheller. 1999. Dynamics of tubulovesicular recycling endosomes in hippocampal neurons. J. Neurosci. 19:10324-10337.
-
(1999)
J. Neurosci
, vol.19
, pp. 10324-10337
-
-
Prekeris, R.1
Foletti, D.L.2
Scheller, R.H.3
-
46
-
-
46249118002
-
Lifeact: a versatile marker to visualize F-actin
-
Riedl, J., A.H. Crevenna, K. Kessenbrock, J.H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T.A. Holak, Z. Werb, et al. 2008. Lifeact: a versatile marker to visualize F-actin. Nat. Methods. 5:605-607. http://dx.doi.org/10.1038/nmeth.1220.
-
(2008)
Nat. Methods
, vol.5
, pp. 605-607
-
-
Riedl, J.1
Crevenna, A.H.2
Kessenbrock, K.3
Yu, J.H.4
Neukirchen, D.5
Bista, M.6
Bradke, F.7
Jenne, D.8
Holak, T.A.9
Werb, Z.10
-
47
-
-
72049090358
-
Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly
-
Rizvi, S.A., E.M. Neidt, J. Cui, Z. Feiger, C.T. Skau, M.L. Gardel, S.A. Kozmin, and D.R. Kovar. 2009. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16:1158-1168. http://dx.doi.org/10.1016/j.chembiol.2009.10.006.
-
(2009)
Chem. Biol
, vol.16
, pp. 1158-1168
-
-
Rizvi, S.A.1
Neidt, E.M.2
Cui, J.3
Feiger, Z.4
Skau, C.T.5
Gardel, M.L.6
Kozmin, S.A.7
Kovar, D.R.8
-
48
-
-
84859595997
-
A simple photoactivation and image analysis module for visualizing and analyzing axonal transport with high temporal resolution
-
Roy, S., G. Yang, Y. Tang, and D.A. Scott. 2012. A simple photoactivation and image analysis module for visualizing and analyzing axonal transport with high temporal resolution. Nat. Protoc. 7:62-68. http://dx.doi.org/10.1038/nprot.2011.428.
-
(2012)
Nat. Protoc
, vol.7
, pp. 62-68
-
-
Roy, S.1
Yang, G.2
Tang, Y.3
Scott, D.A.4
-
49
-
-
0031744448
-
Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport?
-
Ruthel, G., and G. Banker. 1998. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport? Cell Motil. Cytoskeleton. 40:160-173. http://dx.doi.org/10.1002/(SICI)1097-0169(1998)40:2<160::AID-CM5>3.0.CO;2-J.
-
(1998)
Cell Motil. Cytoskeleton
, vol.40
, pp. 160-173
-
-
Ruthel, G.1
Banker, G.2
-
50
-
-
0033557648
-
Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing
-
Ryan, T.A. 1999. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J. Neurosci. 19:1317-1323.
-
(1999)
J. Neurosci
, vol.19
, pp. 1317-1323
-
-
Ryan, T.A.1
-
52
-
-
0037317392
-
Actin has a molecular scaffolding, not propulsive, role in presynaptic function
-
Sankaranarayanan, S., P.P. Atluri, and T.A. Ryan. 2003. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6:127-135. http://dx.doi.org/10.1038/nn1002.
-
(2003)
Nat. Neurosci
, vol.6
, pp. 127-135
-
-
Sankaranarayanan, S.1
Atluri, P.P.2
Ryan, T.A.3
-
53
-
-
70350345551
-
Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury
-
Schafer, D.P., S. Jha, F. Liu, T. Akella, L.D. McCullough, and M.N. Rasband. 2009. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J. Neurosci. 29:13242-13254. http://dx.doi.org/10.1523/JNEUROSCI.3376-09.2009.
-
(2009)
J. Neurosci
, vol.29
, pp. 13242-13254
-
-
Schafer, D.P.1
Jha, S.2
Liu, F.3
Akella, T.4
McCullough, L.D.5
Rasband, M.N.6
-
54
-
-
84862520770
-
Fiji: an opensource platform for biological-image analysis
-
Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. 2012. Fiji: an opensource platform for biological-image analysis. Nat. Methods. 9:676-682. http://dx.doi.org/10.1038/nmeth.2019.
-
(2012)
Nat. Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
Preibisch, S.7
Rueden, C.8
Saalfeld, S.9
Schmid, B.10
-
55
-
-
0020381970
-
Cytoplasmic structure in rapid-frozen axons
-
Schnapp, B.J., and T.S. Reese. 1982. Cytoplasmic structure in rapid-frozen axons. J. Cell Biol. 94:667-669. http://dx.doi.org/10.1083/jcb.94.3.667.
-
(1982)
J. Cell Biol
, vol.94
, pp. 667-669
-
-
Schnapp, B.J.1
Reese, T.S.2
-
56
-
-
84856133266
-
An actin-dependent mechanism for long-range vesicle transport
-
Schuh, M. 2011. An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 13:1431-1436. http://dx.doi.org/10.1038/ncb2353.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1431-1436
-
-
Schuh, M.1
-
57
-
-
84864258151
-
a-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis
-
Scott, D., and S. Roy. 2012. a-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J. Neurosci. 32:10129-10135. http://dx.doi.org/10.1523/JNEUROSCI.0535-12.2012.
-
(2012)
J. Neurosci
, vol.32
, pp. 10129-10135
-
-
Scott, D.1
Roy, S.2
-
58
-
-
79955651488
-
Mechanistic logic underlying the axonal transport of cytosolic proteins
-
Scott, D.A., U. Das, Y. Tang, and S. Roy. 2011. Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron. 70:441-454. http://dx.doi.org/10.1016/j.neuron.2011.03.022.
-
(2011)
Neuron
, vol.70
, pp. 441-454
-
-
Scott, D.A.1
Das, U.2
Tang, Y.3
Roy, S.4
-
59
-
-
0037195182
-
Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton
-
Shupliakov, O., O. Bloom, J.S. Gustafsson, O. Kjaerulff, P. Low, N. Tomilin, V.A. Pieribone, P. Greengard, and L. Brodin. 2002. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl. Acad. Sci. USA. 99:14476-14481. http://dx.doi.org/10.1073/pnas.212381799.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 14476-14481
-
-
Shupliakov, O.1
Bloom, O.2
Gustafsson, J.S.3
Kjaerulff, O.4
Low, P.5
Tomilin, N.6
Pieribone, V.A.7
Greengard, P.8
Brodin, L.9
-
60
-
-
84859577721
-
Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid ß-protein oligomers
-
Tang, Y., D.A. Scott, U. Das, S.D. Edland, K. Radomski, E.H. Koo, and S. Roy. 2012. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid ß-protein oligomers. Traffic. 13:681-693. http://dx.doi.org/10.1111/j.1600-0854.2012.01340.x.
-
(2012)
Traffic
, vol.13
, pp. 681-693
-
-
Tang, Y.1
Scott, D.A.2
Das, U.3
Edland, S.D.4
Radomski, K.5
Koo, E.H.6
Roy, S.7
-
61
-
-
84884558965
-
Fast vesicle transport is required for the slow axonal transport of synapsin
-
Tang, Y., D. Scott, U. Das, D. Gitler, A. Ganguly, and S. Roy. 2013. Fast vesicle transport is required for the slow axonal transport of synapsin. J. Neurosci. 33:15362-15375. http://dx.doi.org/10.1523/JNEUROSCI.1148-13.2013.
-
(2013)
J. Neurosci
, vol.33
, pp. 15362-15375
-
-
Tang, Y.1
Scott, D.2
Das, U.3
Gitler, D.4
Ganguly, A.5
Roy, S.6
-
62
-
-
0024741693
-
Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes
-
Tilney, L.G., and D.A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:1597-1608. http://dx.doi.org/10.1083/jcb.109.4.1597.
-
(1989)
J. Cell Biol
, vol.109
, pp. 1597-1608
-
-
Tilney, L.G.1
Portnoy, D.A.2
-
63
-
-
69549119135
-
Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth
-
Vidali, L., P.A. van Gisbergen, C. Guérin, P. Franco, M. Li, G.M. Burkart, R.C. Augustine, L. Blanchoin, and M. Bezanilla. 2009. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. USA. 106:13341-13346. http://dx.doi.org/10.1073/pnas.0901170106.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 13341-13346
-
-
Vidali, L.1
van Gisbergen, P.A.2
Guérin, C.3
Franco, P.4
Li, M.5
Burkart, G.M.6
Augustine, R.C.7
Blanchoin, L.8
Bezanilla, M.9
-
64
-
-
33745494172
-
Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling
-
Voglmaier, S.M., K. Kam, H. Yang, D.L. Fortin, Z. Hua, R.A. Nicoll, and R.H. Edwards. 2006. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron. 51:71-84. http://dx.doi.org/10.1016/j.neuron.2006.05.027.
-
(2006)
Neuron
, vol.51
, pp. 71-84
-
-
Voglmaier, S.M.1
Kam, K.2
Yang, H.3
Fortin, D.L.4
Hua, Z.5
Nicoll, R.A.6
Edwards, R.H.7
-
65
-
-
80053652431
-
Piccolo regulates the dynamic assembly of presynaptic F-actin
-
Waites, C.L., S.A. Leal-Ortiz, T.F. Andlauer, S.J. Sigrist, and C.C. Garner. 2011. Piccolo regulates the dynamic assembly of presynaptic F-actin. J. Neurosci. 31:14250-14263. http://dx.doi.org/10.1523/JNEUROSCI.1835-11.2011.
-
(2011)
J. Neurosci
, vol.31
, pp. 14250-14263
-
-
Waites, C.L.1
Leal-Ortiz, S.A.2
Andlauer, T.F.3
Sigrist, S.J.4
Garner, C.C.5
-
66
-
-
0030042310
-
Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs
-
Wang, X.H., J.Q. Zheng, and M.M. Poo. 1996. Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs. J. Physiol. 491:187-195. http://dx.doi.org/10.1113/jphysiol.1996.sp021206.
-
(1996)
J. Physiol
, vol.491
, pp. 187-195
-
-
Wang, X.H.1
Zheng, J.Q.2
Poo, M.M.3
-
67
-
-
84908221942
-
a-synuclein multimers cluster synaptic vesicles and attenuate recycling
-
Wang, L., U. Das, D.A. Scott, Y. Tang, P.J. McLean, and S. Roy. 2014. a-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24:2319-2326. http://dx.doi.org/10.1016/j.cub.2014.08.027.
-
(2014)
Curr. Biol
, vol.24
, pp. 2319-2326
-
-
Wang, L.1
Das, U.2
Scott, D.A.3
Tang, Y.4
McLean, P.J.5
Roy, S.6
-
68
-
-
84916929429
-
Clathrin regenerates synaptic vesicles from endosomes
-
Watanabe, S., T. Trimbuch, M. Camacho-Pérez, B.R. Rost, B. Brokowski, B. Söhl-Kielczynski, A. Felies, M.W. Davis, C. Rosenmund, and E.M. Jorgensen. 2014. Clathrin regenerates synaptic vesicles from endosomes. Nature. 515:228-233. http://dx.doi.org/10.1038/nature13846.
-
(2014)
Nature
, vol.515
, pp. 228-233
-
-
Watanabe, S.1
Trimbuch, T.2
Camacho-Pérez, M.3
Rost, B.R.4
Brokowski, B.5
Söhl-Kielczynski, B.6
Felies, A.7
Davis, M.W.8
Rosenmund, C.9
Jorgensen, E.M.10
-
69
-
-
0018385691
-
Axonal transport of actin in rabbit retinal ganglion cells
-
Willard, M., M. Wiseman, J. Levine, and P. Skene. 1979. Axonal transport of actin in rabbit retinal ganglion cells. J. Cell Biol. 81:581-591. http://dx.doi.org/10.1083/jcb.81.3.581.
-
(1979)
J. Cell Biol
, vol.81
, pp. 581-591
-
-
Willard, M.1
Wiseman, M.2
Levine, J.3
Skene, P.4
-
70
-
-
84872796017
-
Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
-
Xu, K., G. Zhong, and X. Zhuang. 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 339:452-456. http://dx.doi.org/10.1126/science.1232251.
-
(2013)
Science
, vol.339
, pp. 452-456
-
-
Xu, K.1
Zhong, G.2
Zhuang, X.3
-
71
-
-
84996486097
-
Developmental mechanism of the periodic membrane skeleton in axons
-
Zhong, G., J. He, R. Zhou, D. Lorenzo, H.P. Babcock, V. Bennett, and X. Zhuang. 2014. Developmental mechanism of the periodic membrane skeleton in axons. eLife. 3. http://dx.doi.org/10.7554/eLife.04581.
-
(2014)
eLife
, pp. 3
-
-
Zhong, G.1
He, J.2
Zhou, R.3
Lorenzo, D.4
Babcock, H.P.5
Bennett, V.6
Zhuang, X.7
|