-
1
-
-
84903458457
-
What Nano Can Do for Energy Storage
-
Gogotsi, Y. What Nano Can Do for Energy Storage ACS Nano 2014, 8, 5369-5371 10.1021/nn503164x
-
(2014)
ACS Nano
, vol.8
, pp. 5369-5371
-
-
Gogotsi, Y.1
-
2
-
-
81555207951
-
Electrical Energy Storage for the Grid: A Battery of Choices
-
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices Science 2011, 334, 928-935 10.1126/science.1212741
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.M.3
-
3
-
-
84895920205
-
A Pomegranate-inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes
-
Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y. A Pomegranate-inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes Nat. Nanotechnol. 2014, 9, 187-192 10.1038/nnano.2014.6
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 187-192
-
-
Liu, N.1
Lu, Z.2
Zhao, J.3
McDowell, M.T.4
Lee, H.W.5
Zhao, W.6
Cui, Y.7
-
4
-
-
67649295059
-
2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage
-
2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage Adv. Mater. 2009, 21, 2536-2539 10.1002/adma.200803439
-
(2009)
Adv. Mater.
, vol.21
, pp. 2536-2539
-
-
Lou, X.W.1
Li, C.M.2
Archer, L.A.3
-
5
-
-
77249086655
-
Advanced Materials for Energy Storage
-
Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials for Energy Storage Adv. Mater. 2010, 22, E28-E62 10.1002/adma.200903328
-
(2010)
Adv. Mater.
, vol.22
, pp. E28-E62
-
-
Liu, C.1
Li, F.2
Ma, L.P.3
Cheng, H.M.4
-
6
-
-
84862281347
-
A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
-
Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes Nano Lett. 2012, 12, 3315-3321 10.1021/nl3014814
-
(2012)
Nano Lett.
, vol.12
, pp. 3315-3321
-
-
Liu, N.1
Wu, H.2
McDowell, M.T.3
Yao, Y.4
Wang, C.M.5
Cui, Y.6
-
7
-
-
84924528297
-
Towards Greener and More Sustainable Batteries for Electrical Energy Storage
-
Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage Nat. Chem. 2014, 7, 19-29 10.1038/nchem.2085
-
(2014)
Nat. Chem.
, vol.7
, pp. 19-29
-
-
Larcher, D.1
Tarascon, J.M.2
-
8
-
-
67049108048
-
2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion
-
2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion ACS Nano 2009, 3, 907-914 10.1021/nn900150y
-
(2009)
ACS Nano
, vol.3
, pp. 907-914
-
-
Wang, D.H.1
Choi, D.W.2
Li, J.3
Yang, Z.G.4
Nie, Z.M.5
Kou, R.6
Hu, D.H.7
Wang, C.M.8
Saraf, L.V.9
Zhang, J.G.10
Aksay, I.H.A.11
Liu, J.12
-
9
-
-
84908010979
-
Facile Synthesis of Chevrel Phase Nanocubes and Their Applications for Multivalent Energy Storage
-
Cheng, Y. W.; Parent, L. R.; Shao, Y. Y.; Wang, C. M.; Sprenkle, V. L.; Li, G. S.; Liu, J. Facile Synthesis of Chevrel Phase Nanocubes and Their Applications for Multivalent Energy Storage Chem. Mater. 2014, 26, 4904-4907 10.1021/cm502306c
-
(2014)
Chem. Mater.
, vol.26
, pp. 4904-4907
-
-
Cheng, Y.W.1
Parent, L.R.2
Shao, Y.Y.3
Wang, C.M.4
Sprenkle, V.L.5
Li, G.S.6
Liu, J.7
-
10
-
-
84903949987
-
Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes
-
Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes Nat. Commun. 2014, 5, 4105 10.1038/ncomms5105
-
(2014)
Nat. Commun.
, vol.5
, pp. 4105
-
-
Li, X.L.1
Gu, M.2
Hu, S.Y.3
Kennard, R.4
Yan, P.F.5
Chen, X.6
Wang, C.M.7
Sailor, M.J.8
Zhang, J.G.9
Liu, J.10
-
11
-
-
0034727086
-
Nano-sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-ion Batteries
-
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-ion Batteries Nature 2000, 407, 496-499 10.1038/35035045
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.M.5
-
12
-
-
84877687451
-
Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
-
Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries Chem. Rev. 2013, 113, 5364-5457 10.1021/cr3001884
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Rao, G.V.S.2
Chowdari, B.V.R.3
-
13
-
-
84867079777
-
Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage
-
Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage Adv. Mater. 2012, 24, 5166-5180 10.1002/adma.201202146
-
(2012)
Adv. Mater.
, vol.24
, pp. 5166-5180
-
-
Jiang, J.1
Li, Y.Y.2
Liu, J.P.3
Huang, X.T.4
Yuan, C.Z.5
Lou, X.W.6
-
14
-
-
84896075034
-
Three-Dimensionally "Curved" NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Li-Ion Batteries with Long Cycle Lifetimes
-
Sun, X. L.; Yan, C. L.; Chen, Y.; Si, W. P.; Deng, J. W.; Oswald, S.; Liu, L. F.; Schmidt, O. G. Three-Dimensionally "Curved" NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Li-Ion Batteries with Long Cycle Lifetimes Adv. Energy Mater. 2014, 4, 1300912 10.1002/aenm.201300912
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1300912
-
-
Sun, X.L.1
Yan, C.L.2
Chen, Y.3
Si, W.P.4
Deng, J.W.5
Oswald, S.6
Liu, L.F.7
Schmidt, O.G.8
-
15
-
-
84896065407
-
Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion Batteries
-
Zhang, L.; Wu, H. B.; Lou, X. W. Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion Batteries Adv. Energy Mater. 2014, 4, 1300958 10.1002/aenm.201300958
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1300958
-
-
Zhang, L.1
Wu, H.B.2
Lou, X.W.3
-
16
-
-
84898004965
-
Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High-Performance Li-Ion Batteries
-
Lin, J.; Raji, A. R. O.; Nan, K. W.; Peng, Z. W.; Yan, Z.; Samuel, E. L. G.; Natelson, D.; Tour, J. M. Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High-Performance Li-Ion Batteries Adv. Funct. Mater. 2014, 24, 2044-2048 10.1002/adfm.201303023
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2044-2048
-
-
Lin, J.1
Raji, A.R.O.2
Nan, K.W.3
Peng, Z.W.4
Yan, Z.5
Samuel, E.L.G.6
Natelson, D.7
Tour, J.M.8
-
17
-
-
70350452801
-
4 Materials under Pulsed Magnetic Field and with an Aging Technique, and Their Electrochemical Performance as Anode for Lithium-Ion Battery
-
4 Materials under Pulsed Magnetic Field and with an Aging Technique, and Their Electrochemical Performance as Anode for Lithium-Ion Battery Electrochim. Acta 2009, 55, 504-510 10.1016/j.electacta.2009.08.068
-
(2009)
Electrochim. Acta
, vol.55
, pp. 504-510
-
-
Rahman, M.M.1
Wang, J.Z.2
Deng, X.L.3
Li, Y.4
Liu, H.K.5
-
18
-
-
84903446873
-
Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries
-
Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries ACS Nano 2014, 8, 6038-6046 10.1021/nn501310n
-
(2014)
ACS Nano
, vol.8
, pp. 6038-6046
-
-
Jiang, H.1
Hu, Y.J.2
Guo, S.J.3
Yan, C.Y.4
Lee, P.S.5
Li, C.Z.6
-
19
-
-
84907654369
-
4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage
-
4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage Adv. Energy Mater. 2014, 4, 1400422 10.1002/aenm.201400422
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400422
-
-
Gao, G.X.1
Wu, H.B.2
Lou, X.W.3
-
20
-
-
84908874525
-
Hierarchical Porous Metal Ferrite Ball-In-Ball Hollow Spheres: General Synthesis, Formation Mechanism, and High Performance as Anode Materials for Li-Ion Batteries
-
Li, S.; Li, A.; Zhang, R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical Porous Metal Ferrite Ball-In-Ball Hollow Spheres: General Synthesis, Formation Mechanism, and High Performance as Anode Materials for Li-Ion Batteries Nano Res. 2014, 7, 1116-1127 10.1007/s12274-014-0474-3
-
(2014)
Nano Res.
, vol.7
, pp. 1116-1127
-
-
Li, S.1
Li, A.2
Zhang, R.3
He, Y.Y.4
Zhai, Y.J.5
Xu, L.Q.6
-
21
-
-
84961289261
-
4 Sub- Microcubes as Superior Anode Towards High-Performance Lithium-Ion Battery
-
4 Sub- Microcubes as Superior Anode Towards High-Performance Lithium-Ion Battery Adv. Funct. Mater. 2015, 25, 238-246 10.1002/adfm.201402827
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 238-246
-
-
Hou, L.R.1
Lian, L.2
Zhang, L.H.3
Pang, G.4
Yuan, C.Z.5
Zhang, X.G.6
-
22
-
-
84906490641
-
2 Nanorods: An Anode Material with Enhanced Electrochemical Performance for Lithium-Ion Batteries
-
2 Nanorods: An Anode Material with Enhanced Electrochemical Performance for Lithium-Ion Batteries Chem.-Eur. J. 2014, 20, 11214-11219 10.1002/chem.201403148
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 11214-11219
-
-
Huang, G.1
Zhang, F.F.2
Du, X.C.3
Wang, J.W.4
Yin, D.M.5
Wang, L.M.6
-
23
-
-
84886776497
-
4 Nanofibers as High Capacity Li-Ion Battery Anode Material
-
4 Nanofibers as High Capacity Li-Ion Battery Anode Material ACS Appl. Mater. Interfaces 2013, 5, 9957-9963 10.1021/am401779p
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 9957-9963
-
-
Cherian, C.T.1
Sundaramurthy, J.2
Reddy, M.V.3
Kumar, P.S.4
Mani, K.5
Pliszka, D.6
Sow, C.H.7
Ramakrishna, S.8
Chowdari, B.V.R.9
-
24
-
-
84905985293
-
General Synthesis of Multi-Shelled Mixed Metal Oxide Hollow Spheres with Superior Lithium Storage Properties
-
Zhang, G. Q.; Lou, X. W. General Synthesis of Multi-Shelled Mixed Metal Oxide Hollow Spheres with Superior Lithium Storage Properties Angew. Chem. 2014, 126, 9187-9190 10.1002/ange.201404604
-
(2014)
Angew. Chem.
, vol.126
, pp. 9187-9190
-
-
Zhang, G.Q.1
Lou, X.W.2
-
25
-
-
84904575767
-
Tailoring the Void Size of Iron Oxide@Carbon Yolk-Shell Structure for Optimized Lithium Storage
-
Zhang, H. W.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Z. Tailoring the Void Size of Iron Oxide@Carbon Yolk-Shell Structure for Optimized Lithium Storage Adv. Funct. Mater. 2014, 24, 4337-4342 10.1002/adfm.201400178
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4337-4342
-
-
Zhang, H.W.1
Zhou, L.2
Noonan, O.3
Martin, D.J.4
Whittaker, A.K.5
Yu, C.Z.6
-
26
-
-
84922013639
-
4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors
-
4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors Angew. Chem., Int. Ed. 2015, 54, 1868-1872 10.1002/anie.201409776
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 1868-1872
-
-
Shen, L.F.1
Yu, L.2
Yu, X.Y.3
Zhang, X.G.4
Lou, X.W.5
-
27
-
-
84876498623
-
2 Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-ion Batteries
-
2 Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-ion Batteries Adv. Mater. 2013, 25, 2279-2283 10.1002/adma.201204506
-
(2013)
Adv. Mater.
, vol.25
, pp. 2279-2283
-
-
Hong, Y.J.1
Son, M.Y.2
Kang, Y.C.3
-
28
-
-
84920442493
-
2 Fiber-in-Tube Nanostructures with Superior Electrochemical Properties
-
2 Fiber-in-Tube Nanostructures with Superior Electrochemical Properties Chem.-Eur. J. 2015, 21, 371-376 10.1002/chem.201405146
-
(2015)
Chem. - Eur. J.
, vol.21
, pp. 371-376
-
-
Hong, Y.J.1
Yoon, J.W.2
Lee, J.H.3
Kang, Y.C.4
-
29
-
-
85027931367
-
Effect of Esterification Reaction of Citric Acid and Ethylene Glycol on the Formation of Multi-Shelled Cobalt Oxide Powders with Superior Electrochemical Properties
-
Park, G. D.; Lee, J. H.; Lee, J. K.; Kang, Y. C. Effect of Esterification Reaction of Citric Acid and Ethylene Glycol on the Formation of Multi-Shelled Cobalt Oxide Powders with Superior Electrochemical Properties Nano Res. 2014, 7, 1738-1748 10.1007/s12274-014-0533-9
-
(2014)
Nano Res.
, vol.7
, pp. 1738-1748
-
-
Park, G.D.1
Lee, J.H.2
Lee, J.K.3
Kang, Y.C.4
-
30
-
-
60349102448
-
2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials
-
2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials Adv. Mater. 2009, 21, 803-807 10.1002/adma.200800596
-
(2009)
Adv. Mater.
, vol.21
, pp. 803-807
-
-
Park, J.C.1
Kim, J.H.2
Kwon, H.S.3
Song, H.J.4
-
31
-
-
84861053851
-
Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries
-
Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries Nano Lett. 2012, 12, 2429-2435 10.1021/nl3004286
-
(2012)
Nano Lett.
, vol.12
, pp. 2429-2435
-
-
Koo, B.1
Xiong, H.2
Slater, M.D.3
Prakapenka, V.B.4
Balasubramanian, M.5
Podsiadlo, P.6
Johnson, C.S.7
Rajh, T.8
Shevchenko, E.V.9
-
33
-
-
84915814993
-
2 Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties
-
2 Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties Angew. Chem., Int. Ed. 2014, 53, 12590-12593 10.1002/anie.201406476
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 12590-12593
-
-
Zhang, G.Q.1
Wu, H.B.2
Song, T.S.3
Paik, U.G.4
Lou, X.W.5
-
34
-
-
84911937989
-
4 Nanocubes from Metal-Organic Frameworks with Extraordinary Lithium Storage
-
4 Nanocubes from Metal-Organic Frameworks with Extraordinary Lithium Storage Nanoscale 2014, 6, 15168-15174 10.1039/C4NR04422C
-
(2014)
Nanoscale
, vol.6
, pp. 15168-15174
-
-
Guo, H.1
Li, T.T.2
Chen, W.W.3
Liu, L.X.4
Yang, X.J.5
Wang, Y.P.6
Guo, Y.C.7
-
35
-
-
84934921539
-
4 Hollow Nano-spheres for a Li ion Battery Anode with Extraordinary Performance
-
4 Hollow Nano-spheres for a Li ion Battery Anode with Extraordinary Performance Nano Res. 2014, 7, 1128-1136 10.1007/s12274-014-0475-2
-
(2014)
Nano Res.
, vol.7
, pp. 1128-1136
-
-
Kim, W.S.1
Hwa, Y.2
Kim, H.C.3
Choi, J.H.4
Sohn, H.J.5
Hong, S.H.6
-
36
-
-
84899452519
-
Micelle Templated NiO Hollow Nanospheres as Anode Materials in Lithium Ion Batteries
-
Sasidharan, M.; Gunawardhana, N.; Senthil, C.; Yoshio, M. Micelle Templated NiO Hollow Nanospheres as Anode Materials in Lithium Ion Batteries J. Mater. Chem. A 2014, 2, 7337-7344 10.1039/c3ta14937d
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7337-7344
-
-
Sasidharan, M.1
Gunawardhana, N.2
Senthil, C.3
Yoshio, M.4
-
37
-
-
84928969759
-
3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries
-
3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries ACS Nano 2015, 9, 4026-4035 10.1021/acsnano.5b00088
-
(2015)
ACS Nano
, vol.9
, pp. 4026-4035
-
-
Cho, J.S.1
Hong, Y.J.2
Kang, Y.C.3
-
38
-
-
2342433390
-
Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect
-
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect Science 2004, 304, 711-714 10.1126/science.1096566
-
(2004)
Science
, vol.304
, pp. 711-714
-
-
Yin, Y.D.1
Rioux, R.M.2
Erdonmez, C.K.3
Hughes, S.4
Somorjai, G.A.5
Alivisatos, A.P.6
-
39
-
-
84907984640
-
Nanoparticle Conversion Chemistry: Kirkendall Effect, Galvanic Exchange, and Anion Exchange
-
Anderson, B. D.; Tracy, J. B. Nanoparticle Conversion Chemistry: Kirkendall Effect, Galvanic Exchange, and Anion Exchange Nanoscale 2014, 6, 12195-12216 10.1039/C4NR02025A
-
(2014)
Nanoscale
, vol.6
, pp. 12195-12216
-
-
Anderson, B.D.1
Tracy, J.B.2
-
40
-
-
77951714344
-
Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles
-
Railsback, J. G.; Johnston-Peck, A. C.; Wang, J. W.; Tracy, J. B. Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles ACS Nano 2010, 4, 1913-1920 10.1021/nn901736y
-
(2010)
ACS Nano
, vol.4
, pp. 1913-1920
-
-
Railsback, J.G.1
Johnston-Peck, A.C.2
Wang, J.W.3
Tracy, J.B.4
-
41
-
-
34248220999
-
Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept
-
Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gosele, U. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept Nano Lett. 2007, 7, 993-997 10.1021/nl070026p
-
(2007)
Nano Lett.
, vol.7
, pp. 993-997
-
-
Fan, H.J.1
Knez, M.2
Scholz, R.3
Hesse, D.4
Nielsch, K.5
Zacharias, M.6
Gosele, U.7
-
42
-
-
84859297871
-
4 Porous Nanocages with Extraordinarily High Capacity for Lithium Storage
-
4 Porous Nanocages with Extraordinarily High Capacity for Lithium Storage Chem.-Eur. J. 2012, 18, 8971-8977 10.1002/chem.201200770
-
(2012)
Chem. - Eur. J.
, vol.18
, pp. 8971-8977
-
-
Hu, L.1
Yan, N.2
Chen, Q.W.3
Zhang, P.4
Zhong, H.5
Zheng, X.R.6
Li, Y.7
Hu, X.Y.8
-
43
-
-
35248819705
-
Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review
-
Fan, H. J.; Gösele, U.; Zacharias, M. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review Small 2007, 3, 1660-1671 10.1002/smll.200700382
-
(2007)
Small
, vol.3
, pp. 1660-1671
-
-
Fan, H.J.1
Gösele, U.2
Zacharias, M.3
-
44
-
-
84864239094
-
2 Nanocrystal/Graphite Composites and Their Lithium Storage Properties
-
2 Nanocrystal/Graphite Composites and Their Lithium Storage Properties ACS Appl. Mater. Interfaces 2012, 4, 3459-3464 10.1021/am3005237
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 3459-3464
-
-
Lee, Y.M.1
Jo, M.R.2
Song, K.S.3
Nam, K.M.4
Park, J.T.5
Kang, Y.M.6
-
45
-
-
84911374500
-
In-Situ TEM Visualization of Vacancy Injection and Chemical Partition During Oxidation of Ni-Cr Nanoparticles
-
Wang, C. M.; Genc, A.; Cheng, H. K.; Pullan, L.; Baer, D. R.; Bruemmer, S. M. In-Situ TEM Visualization of Vacancy Injection and Chemical Partition During Oxidation of Ni-Cr Nanoparticles Sci. Rep. 2014, 4, 3683 10.1038/srep03683
-
(2014)
Sci. Rep.
, vol.4
, pp. 3683
-
-
Wang, C.M.1
Genc, A.2
Cheng, H.K.3
Pullan, L.4
Baer, D.R.5
Bruemmer, S.M.6
-
46
-
-
33749528182
-
4 Spinel Nanotubes Using a Reactive and Removable MgO Nanowire Template
-
4 Spinel Nanotubes Using a Reactive and Removable MgO Nanowire Template Nanotechnology 2006, 17, 5157-5162 10.1088/0957-4484/17/20/020
-
(2006)
Nanotechnology
, vol.17
, pp. 5157-5162
-
-
Fan, H.J.1
Knez, M.2
Scholz, R.3
Nielsch, K.4
Pippel, E.5
Hesse, D.6
Gösele, U.7
Zacharias, M.8
-
48
-
-
84888370336
-
Effects of Co Ion Addition and Annealing Conditions on Nickel Ferrite Gas Response
-
Sutka, A.; Pärna, R.; Mezinskis, G.; Kisand, V. Effects of Co Ion Addition and Annealing Conditions on Nickel Ferrite Gas Response Sens. Actuators, B 2014, 192, 173-180 10.1016/j.snb.2013.10.077
-
(2014)
Sens. Actuators, B
, vol.192
, pp. 173-180
-
-
Sutka, A.1
Pärna, R.2
Mezinskis, G.3
Kisand, V.4
-
49
-
-
74449090412
-
4 Hollow Nanospheres via a Gel-Assistant Hydrothermal Route
-
4 Hollow Nanospheres via a Gel-Assistant Hydrothermal Route J. Alloys Compd. 2010, 491, L33-L38 10.1016/j.jallcom.2009.11.031
-
(2010)
J. Alloys Compd.
, vol.491
, pp. L33-L38
-
-
Chen, L.Y.1
Dai, H.2
Shen, Y.M.3
Bai, J.F.4
-
50
-
-
84900836334
-
4-Carbon Nanocomposite Anodes with Exceptional Electrochemical Performance for Li Ion Batteries
-
4-Carbon Nanocomposite Anodes with Exceptional Electrochemical Performance for Li Ion Batteries J. Mater. Chem. A 2014, 2, 8314-8322 10.1039/c4ta00507d
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8314-8322
-
-
Heidari, E.K.1
Zhang, B.2
Sohi, M.H.3
Ataie, A.4
Kim, J.K.5
-
51
-
-
84879531327
-
4 Nanorod-Graphene Composites via an Ionic Liquid Assisted One-Step Hydrothermal Approach and Their Microwave Absorbing Properties
-
4 Nanorod-Graphene Composites via an Ionic Liquid Assisted One-Step Hydrothermal Approach and Their Microwave Absorbing Properties J. Mater. Chem. A 2013, 1, 5577-5586 10.1039/c3ta10402h
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 5577-5586
-
-
Fu, M.1
Jiao, Q.Z.2
Zhao, Y.3
-
52
-
-
80053624121
-
4 Microparticles and its Catalytic Properties for Methane Combustion
-
4 Microparticles and its Catalytic Properties for Methane Combustion Mater. Sci. Eng., B 2011, 176, 1509-1512 10.1016/j.mseb.2011.09.007
-
(2011)
Mater. Sci. Eng., B
, vol.176
, pp. 1509-1512
-
-
Feng, S.J.1
Yang, W.2
Wang, Z.B.3
-
53
-
-
84892944505
-
Three-Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors
-
Maiti, U. N.; Lim, J. W.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors Adv. Mater. 2014, 26, 615-619 10.1002/adma.201303503
-
(2014)
Adv. Mater.
, vol.26
, pp. 615-619
-
-
Maiti, U.N.1
Lim, J.W.2
Lee, K.E.3
Lee, W.J.4
Kim, S.O.5
-
54
-
-
84961290247
-
8-Reduced Graphene Oxide Composite Powders
-
8-Reduced Graphene Oxide Composite Powders Nanoscale 2015, 7, 6230-6237 10.1039/C5NR00012B
-
(2015)
Nanoscale
, vol.7
, pp. 6230-6237
-
-
Choi, S.H.1
Kang, Y.C.2
-
55
-
-
84920595950
-
4-Decorated Hollow Graphene Balls Prepared by Spray Pyrolysis Process for Ultrafast and Long Cycle-Life Lithium Ion Batteries
-
4-Decorated Hollow Graphene Balls Prepared by Spray Pyrolysis Process for Ultrafast and Long Cycle-Life Lithium Ion Batteries Carbon 2014, 79, 58-66 10.1016/j.carbon.2014.07.042
-
(2014)
Carbon
, vol.79
, pp. 58-66
-
-
Choi, S.H.1
Kang, Y.C.2
-
56
-
-
84865003401
-
3 Decorated Single-Walled Carbon Nanotube Membrane as a High-Performance Flexible Anode for Lithium Ion Batteries
-
3 Decorated Single-Walled Carbon Nanotube Membrane as a High-Performance Flexible Anode for Lithium Ion Batteries J. Mater. Chem. 2012, 22, 17942-17946 10.1039/c2jm32893c
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 17942-17946
-
-
Zhou, G.M.1
Wang, D.W.2
Hou, P.X.3
Li, W.S.4
Li, N.5
Liu, C.6
Li, F.7
Cheng, H.M.8
-
57
-
-
84896876116
-
Ultrafast Synthesis of Yolk-Shell and Cubic NiO Nanopowders and Application in Lithium Ion Batteries
-
Choi, S. H.; Kang, Y. C. Ultrafast Synthesis of Yolk-Shell and Cubic NiO Nanopowders and Application in Lithium Ion Batteries ACS Appl. Mater. Interfaces 2014, 6, 2312-2316 10.1021/am404232x
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 2312-2316
-
-
Choi, S.H.1
Kang, Y.C.2
-
58
-
-
84899869691
-
3 Nanotubes Derived from Metal Organic Frameworks for Superior Lithium Ion Battery Anodes
-
3 Nanotubes Derived from Metal Organic Frameworks for Superior Lithium Ion Battery Anodes J. Mater. Chem. A 2014, 2, 8048-8053 10.1039/c4ta00200h
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8048-8053
-
-
Huang, G.1
Zhang, F.F.2
Zhang, L.L.3
Du, X.C.4
Wang, J.W.5
Wang, L.M.6
-
59
-
-
84928669689
-
3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis
-
3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis Chem. Mater. 2015, 27, 2803 10.1021/cm504365s
-
(2015)
Chem. Mater.
, vol.27
, pp. 2803
-
-
Wang, J.J.1
Zhou, H.2
Nanda, J.J.3
Braun, P.V.4
-
60
-
-
84924598499
-
4 and Graphene Composites as Anode Materials for Lithium Ion Batteries
-
4 and Graphene Composites as Anode Materials for Lithium Ion Batteries Carbon 2015, 86, 310-317 10.1016/j.carbon.2015.01.062
-
(2015)
Carbon
, vol.86
, pp. 310-317
-
-
Dong, Y.C.1
Yung, K.C.2
Ma, R.G.3
Yang, X.4
Chui, Y.S.5
Lee, J.M.6
Zapien, J.A.7
-
61
-
-
84901585748
-
4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material
-
4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material Adv. Funct. Mater. 2014, 24, 3012-3020 10.1002/adfm.201303442
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 3012-3020
-
-
Bai, J.1
Li, X.G.2
Liu, G.Z.3
Qian, Y.T.4
Xiong, S.L.5
-
62
-
-
84891401836
-
3 as a High-Capacity, High-Rate and Long-Life Anode Material for Lithium Ion Batteries
-
3 as a High-Capacity, High-Rate and Long-Life Anode Material for Lithium Ion Batteries Nano Energy 2014, 4, 23-30 10.1016/j.nanoen.2013.12.001
-
(2014)
Nano Energy
, vol.4
, pp. 23-30
-
-
Jiang, Y.Z.1
Zhang, D.2
Li, Y.3
Yuan, T.4
Bahlawane, N.5
Liang, C.6
Sun, W.P.7
Lu, Y.H.8
Yan, M.9
|