메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

Author keywords

Citrate synthase; Genomic DNA sequencing; Hexose transporter; Histone deacetylase; MTH1; Pyruvate decarboxylase; Reverse engineering; Yeast

Indexed keywords

CARBON; CITRATE SYNTHASE; GENOMIC DNA; GLUCOSE; GLUCOSE TRANSPORTER; HISTONE DEACETYLASE; PYRUVATE DECARBOXYLASE; SUGAR; CULTURE MEDIUM; HXT2 PROTEIN, S CEREVISIAE; MTH1 PROTEIN, S CEREVISIAE; RPD3 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SIGNAL TRANSDUCING ADAPTOR PROTEIN;

EID: 84938561675     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-015-0305-6     Document Type: Article
Times cited : (18)

References (50)
  • 1
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae
    • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122-131. doi: 10.1111/j.1567-1364.2007.00302.x
    • (2008) FEMS Yeast Res , vol.8 , Issue.1 , pp. 122-131
    • Nielsen, J.1    Jewett, M.C.2
  • 2
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim IK, Roldao A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12(2):228-248. doi: 10.1111/j.1567-1364.2011.00779.x
    • (2012) FEMS Yeast Res , vol.12 , Issue.2 , pp. 228-248
    • Kim, I.K.1    Roldao, A.2    Siewers, V.3    Nielsen, J.4
  • 3
    • 84887618970 scopus 로고    scopus 로고
    • Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks
    • Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24(6):965-972. doi: 10.1016/j.copbio.2013.03.008
    • (2013) Curr Opin Biotechnol , vol.24 , Issue.6 , pp. 965-972
    • Chen, Y.1    Nielsen, J.2
  • 4
    • 84933518878 scopus 로고    scopus 로고
    • Recent applications of synthetic biology tools for yeast metabolic engineering
    • Jensen MK, Keasling JD (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. doi: 10.1111/1567-1364.12185
    • (2014) FEMS Yeast Res
    • Jensen, M.K.1    Keasling, J.D.2
  • 5
    • 84857049924 scopus 로고    scopus 로고
    • Metabolic engineering, synthetic biology and systems biology
    • Nielsen J, Pronk JT (2012) Metabolic engineering, synthetic biology and systems biology. FEMS Yeast Res 12(2):103. doi: 10.1111/j.1567-1364.2011.00783.x
    • (2012) FEMS Yeast Res , vol.12 , Issue.2 , pp. 103
    • Nielsen, J.1    Pronk, J.T.2
  • 6
    • 0032900245 scopus 로고    scopus 로고
    • Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae
    • Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT (1999) Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73-79 (S0378-1097(99)00124-X [pii])
    • (1999) FEMS Microbiol Lett , vol.174 , Issue.1 , pp. 73-79
    • Flikweert, M.T.1    Swaaf, M.2    Dijken, J.P.3    Pronk, J.T.4
  • 7
    • 0024538747 scopus 로고
    • A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations
    • Schaaff I, Green JB, Gozalbo D, Hohmann S (1989) A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations. Curr Genet 15(2):75-81
    • (1989) Curr Genet , vol.15 , Issue.2 , pp. 75-81
    • Schaaff, I.1    Green, J.B.2    Gozalbo, D.3    Hohmann, S.4
  • 8
    • 0025304880 scopus 로고
    • Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
    • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188(3):615-621
    • (1990) Eur J Biochem , vol.188 , Issue.3 , pp. 615-621
    • Hohmann, S.1    Cederberg, H.2
  • 9
    • 0026315442 scopus 로고
    • Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae
    • Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173(24):7963-7969
    • (1991) J Bacteriol , vol.173 , Issue.24 , pp. 7963-7969
    • Hohmann, S.1
  • 10
    • 0029984511 scopus 로고    scopus 로고
    • Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
    • Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12(3):247-257. doi: 10.1002/(SICI)1097-0061(19960315)12:3<247:AID-YEA911>3.0.CO;2-I
    • (1996) Yeast , vol.12 , Issue.3 , pp. 247-257
    • Flikweert, M.T.1    Zanden, L.2    Janssen, W.M.3    Steensma, H.Y.4    Dijken, J.P.5    Pronk, J.T.6
  • 11
    • 0037394829 scopus 로고    scopus 로고
    • Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • van Maris AJ, Luttik MA, Winkler AA, van Dijken JP, Pronk JT (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094-2099
    • (2003) Appl Environ Microbiol , vol.69 , Issue.4 , pp. 2094-2099
    • Maris, A.J.1    Luttik, M.A.2    Winkler, A.A.3    Dijken, J.P.4    Pronk, J.T.5
  • 12
    • 0345869655 scopus 로고    scopus 로고
    • Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
    • van Maris AJ, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD et al (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159-166
    • (2004) Appl Environ Microbiol , vol.70 , Issue.1 , pp. 159-166
    • Maris, A.J.1    Geertman, J.M.2    Vermeulen, A.3    Groothuizen, M.K.4    Winkler, A.A.5    Piper, M.D.6
  • 13
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM et al (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11(1):131. doi: 10.1186/1475-2859-11-131
    • (2012) Microb Cell Fact , vol.11 , Issue.1 , pp. 131
    • Oud, B.1    Flores, C.L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.M.6
  • 14
    • 0028170694 scopus 로고
    • The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae
    • Gamo FJ, Lafuente MJ, Gancedo C (1994) The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J Bacteriol 176(24):7423-7429
    • (1994) J Bacteriol , vol.176 , Issue.24 , pp. 7423-7429
    • Gamo, F.J.1    Lafuente, M.J.2    Gancedo, C.3
  • 15
    • 0029559861 scopus 로고
    • A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae
    • Blazquez MA, Gamo FJ, Gancedo C (1995) A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae. FEBS Lett 377(2):197-200 (0014-5793(95)01337-7 [pii])
    • (1995) FEBS Lett , vol.377 , Issue.2 , pp. 197-200
    • Blazquez, M.A.1    Gamo, F.J.2    Gancedo, C.3
  • 16
    • 0033962922 scopus 로고    scopus 로고
    • Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
    • Lafuente MJ, Gancedo C, Jauniaux JC, Gancedo JM (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol 35(1):161-172 (mmi1688 [pii])
    • (2000) Mol Microbiol , vol.35 , Issue.1 , pp. 161-172
    • Lafuente, M.J.1    Gancedo, C.2    Jauniaux, J.C.3    Gancedo, J.M.4
  • 17
    • 0033986343 scopus 로고    scopus 로고
    • The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast
    • Schulte F, Wieczorke R, Hollenberg CP, Boles E (2000) The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3-and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182(2):540-542. doi: 10.1128/Jb.182.2.540-542.2000
    • (2000) J Bacteriol , vol.182 , Issue.2 , pp. 540-542
    • Schulte, F.1    Wieczorke, R.2    Hollenberg, C.P.3    Boles, E.4
  • 18
    • 0027244246 scopus 로고
    • Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae
    • Ozcan S, Freidel K, Leuker A, Ciriacy M (1993) Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J Bacteriol 175(17):5520-5528
    • (1993) J Bacteriol , vol.175 , Issue.17 , pp. 5520-5528
    • Ozcan, S.1    Freidel, K.2    Leuker, A.3    Ciriacy, M.4
  • 19
    • 1242274644 scopus 로고    scopus 로고
    • Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
    • Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. P Natl Acad Sci USA 101(6):1572-1577. doi: 10.1073/pnas.0305901101
    • (2004) P Natl Acad Sci USA , vol.101 , Issue.6 , pp. 1572-1577
    • Moriya, H.1    Johnston, M.2
  • 20
    • 0142061170 scopus 로고    scopus 로고
    • Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1
    • Lakshmanan J, Mosley AL, Ozcan S (2003) Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet 44(1):19-25. doi: 10.1007/s00294-003-0423-2
    • (2003) Curr Genet , vol.44 , Issue.1 , pp. 19-25
    • Lakshmanan, J.1    Mosley, A.L.2    Ozcan, S.3
  • 21
    • 15544364487 scopus 로고    scopus 로고
    • How the Rgt1 transcription factor of Saccharomyces cerevisiae is replated by glucose
    • Polish JA, Kim JH, Johnston M (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is replated by glucose. Genetics 169(2):583-594. doi: 10.1534/genetics.104.034512
    • (2005) Genetics , vol.169 , Issue.2 , pp. 583-594
    • Polish, J.A.1    Kim, J.H.2    Johnston, M.3
  • 22
    • 0025016105 scopus 로고
    • The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport
    • Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10(11):5903-5913
    • (1990) Mol Cell Biol , vol.10 , Issue.11 , pp. 5903-5913
    • Kruckeberg, A.L.1    Bisson, L.F.2
  • 23
    • 0022731046 scopus 로고
    • Saccharomyces cerevisiae contains two functional citrate synthase genes
    • Kim KS, Rosenkrantz MS, Guarente L (1986) Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol 6(6):1936-1942
    • (1986) Mol Cell Biol , vol.6 , Issue.6 , pp. 1936-1942
    • Kim, K.S.1    Rosenkrantz, M.S.2    Guarente, L.3
  • 24
    • 0025337743 scopus 로고
    • Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae
    • Vidal M, Buckley AM, Hilger F, Gaber RF (1990) Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics 125(2):313-320
    • (1990) Genetics , vol.125 , Issue.2 , pp. 313-320
    • Vidal, M.1    Buckley, A.M.2    Hilger, F.3    Gaber, R.F.4
  • 25
    • 48449106792 scopus 로고    scopus 로고
    • The Jpred 3 secondary structure prediction server
    • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197-W201. doi: 10.1093/Nar/Gkn238
    • (2008) Nucleic Acids Res , vol.36 , pp. W197-W201
    • Cole, C.1    Barber, J.D.2    Barton, G.J.3
  • 26
    • 77954065271 scopus 로고    scopus 로고
    • I-TASSER: a unified platform for automated protein structure and function prediction
    • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725-738. doi: 10.1038/nprot.2010.5
    • (2010) Nat Protoc , vol.5 , Issue.4 , pp. 725-738
    • Roy, A.1    Kucukural, A.2    Zhang, Y.3
  • 27
    • 34247580875 scopus 로고    scopus 로고
    • 25 Yeast genetic strain and plasmid collections
    • In: Ian S, Michael JRS (eds) Methods in microbiology. Academic, USA
    • Entian K-D, Kötter P (2007) 25 Yeast genetic strain and plasmid collections. In: Ian S, Michael JRS (eds) Methods in microbiology. Academic, USA, pp 629-666
    • (2007) , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 28
    • 30944448623 scopus 로고    scopus 로고
    • Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae
    • Kim JH, Brachet V, Moriya H, Johnston M (2006) Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell 5(1):167-173. doi: 10.1128/EC.5.1.167-173.2006
    • (2006) Eukaryot Cell , vol.5 , Issue.1 , pp. 167-173
    • Kim, J.H.1    Brachet, V.2    Moriya, H.3    Johnston, M.4
  • 29
    • 84938644338 scopus 로고    scopus 로고
    • Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase
    • Chen Y, Zhang Y, Siewers V, Nielsen J (2015) Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res 15(3). doi: 10.1093/femsyr/fov015
    • (2015) FEMS Yeast Res , vol.15 , Issue.3
    • Chen, Y.1    Zhang, Y.2    Siewers, V.3    Nielsen, J.4
  • 30
    • 0030851877 scopus 로고    scopus 로고
    • Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess
    • Flikweert MT, van Dijken JP, Pronk JT (1997) Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess. Appl Environ Microbiol 63(9):3399-3404
    • (1997) Appl Environ Microbiol , vol.63 , Issue.9 , pp. 3399-3404
    • Flikweert, M.T.1    Dijken, J.P.2    Pronk, J.T.3
  • 31
    • 44349170639 scopus 로고    scopus 로고
    • Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases
    • Gey U, Czupalla C, Hoflack B, Rodel G, Krause-Buchholz U (2008) Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J Biol Chem 283(15):9759-9767. doi: 10.1074/jbc.M708779200
    • (2008) J Biol Chem , vol.283 , Issue.15 , pp. 9759-9767
    • Gey, U.1    Czupalla, C.2    Hoflack, B.3    Rodel, G.4    Krause-Buchholz, U.5
  • 32
    • 0026548588 scopus 로고
    • Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system
    • Bowman SB, Zaman Z, Collinson LP, Brown AJ, Dawes IW (1992) Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Mol Gen Genet 231(2):296-303
    • (1992) Mol Gen Genet , vol.231 , Issue.2 , pp. 296-303
    • Bowman, S.B.1    Zaman, Z.2    Collinson, L.P.3    Brown, A.J.4    Dawes, I.W.5
  • 33
    • 0030891998 scopus 로고    scopus 로고
    • Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
    • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245(2):324-333
    • (1997) Eur J Biochem , vol.245 , Issue.2 , pp. 324-333
    • Reifenberger, E.1    Boles, E.2    Ciriacy, M.3
  • 34
    • 0028872732 scopus 로고
    • Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
    • Ozcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15(3):1564-1572
    • (1995) Mol Cell Biol , vol.15 , Issue.3 , pp. 1564-1572
    • Ozcan, S.1    Johnston, M.2
  • 35
    • 44849104320 scopus 로고    scopus 로고
    • The early steps of glucose signalling in yeast
    • Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32(4):673-704. doi: 10.1111/j.1574-6976.2008.00117.x
    • (2008) FEMS Microbiol Rev , vol.32 , Issue.4 , pp. 673-704
    • Gancedo, J.M.1
  • 36
    • 77952119807 scopus 로고    scopus 로고
    • The Rpd3L HDAC complex is essential for the heat stress response in yeast
    • Ruiz-Roig C, Vieitez C, Posas F, de Nadal E (2010) The Rpd3L HDAC complex is essential for the heat stress response in yeast. Mol Microbiol 76(4):1049-1062. doi: 10.1111/j.1365-2958.2010.07167.x
    • (2010) Mol Microbiol , vol.76 , Issue.4 , pp. 1049-1062
    • Ruiz-Roig, C.1    Vieitez, C.2    Posas, F.3    Nadal, E.4
  • 37
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavare S, Aparicio OM (2009) Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23(9):1077-1090. doi: 10.1101/gad.1784309
    • (2009) Genes Dev , vol.23 , Issue.9 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 38
    • 84860203624 scopus 로고    scopus 로고
    • Function and molecular mechanism of acetylation in autophagy regulation
    • Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J et al (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336(6080):474-477. doi: 10.1126/science.1216990
    • (2012) Science , vol.336 , Issue.6080 , pp. 474-477
    • Yi, C.1    Ma, M.2    Ran, L.3    Zheng, J.4    Tong, J.5    Zhu, J.6
  • 39
    • 0037380209 scopus 로고    scopus 로고
    • Histone acetylation and deacetylation in yeast
    • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4):276-284. doi: 10.1038/nrm1075
    • (2003) Nat Rev Mol Cell Biol , vol.4 , Issue.4 , pp. 276-284
    • Kurdistani, S.K.1    Grunstein, M.2
  • 40
    • 33745557847 scopus 로고    scopus 로고
    • Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription
    • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell 23(2):207-217. doi: 10.1016/j.molcel.2006.05.040
    • (2006) Mol Cell , vol.23 , Issue.2 , pp. 207-217
    • Takahashi, H.1    McCaffery, J.M.2    Irizarry, R.A.3    Boeke, J.D.4
  • 41
    • 0031464418 scopus 로고    scopus 로고
    • Cloning-free PCR-based allele replacement methods
    • Erdeniz N, Mortensen UH, Rothstein R (1997) Cloning-free PCR-based allele replacement methods. Genome Res 7(12):1174-1183
    • (1997) Genome Res , vol.7 , Issue.12 , pp. 1174-1183
    • Erdeniz, N.1    Mortensen, U.H.2    Rothstein, R.3
  • 42
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519-2524 (6w0051 [pii])
    • (1996) Nucleic Acids Res , vol.24 , Issue.13 , pp. 2519-2524
    • Guldener, U.1    Heck, S.2    Fielder, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 43
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-96
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 44
    • 0032580437 scopus 로고    scopus 로고
    • An improved protocol for the preparation of yeast cells for transformation by electroporation
    • Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14(6):565-571. doi: 10.1002/(SICI)1097-0061(19980430)14:6<565:AID-YEA251>3.0.CO;2-B
    • (1998) Yeast , vol.14 , Issue.6 , pp. 565-571
    • Thompson, J.R.1    Register, E.2    Curotto, J.3    Kurtz, M.4    Kelly, R.5
  • 45
    • 84872424364 scopus 로고    scopus 로고
    • amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae
    • Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT et al (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126-139. doi: 10.1111/1567-1364.12024
    • (2013) FEMS Yeast Res , vol.13 , Issue.1 , pp. 126-139
    • Solis-Escalante, D.1    Kuijpers, N.G.2    Bongaerts, N.3    Bolat, I.4    Bosman, L.5    Pronk, J.T.6
  • 46
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501-517. doi: 10.1002/yea.320080703
    • (1992) Yeast , vol.8 , Issue.7 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Dijken, J.P.4
  • 47
    • 77956295988 scopus 로고    scopus 로고
    • The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297-1303. doi: 10.1101/gr.107524.110
    • (2010) Genome Res , vol.20 , Issue.9 , pp. 1297-1303
    • McKenna, A.1    Hanna, M.2    Banks, E.3    Sivachenko, A.4    Cibulskis, K.5    Kernytsky, A.6
  • 48
    • 70549086797 scopus 로고    scopus 로고
    • Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae
    • Teste MA, Duquenne M, Francois JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99. doi: 10.1186/1471-2199-10-99
    • (2009) BMC Mol Biol , vol.10 , pp. 99
    • Teste, M.A.1    Duquenne, M.2    Francois, J.M.3    Parrou, J.L.4
  • 49
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797. doi: 10.1093/nar/gkh340
    • (2004) Nucleic Acids Res , vol.32 , Issue.5 , pp. 1792-1797
    • Edgar, R.C.1
  • 50
    • 58149193233 scopus 로고    scopus 로고
    • The SWISS-MODEL repository and associated resources
    • Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37(Database issue):D387-D392. doi: 10.1093/nar/gkn750
    • (2009) Nucleic Acids Res , vol.37 , Issue.DATABASE ISSUE , pp. D387-D392
    • Kiefer, F.1    Arnold, K.2    Kunzli, M.3    Bordoli, L.4    Schwede, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.