메뉴 건너뛰기




Volumn 19, Issue 8, 2015, Pages 445-452

Contrasting network and modular perspectives on inhibitory control

Author keywords

Attention; Cognitive control; fMRI; Intrinsic connectivity networks; Neural modules; Response inhibition

Indexed keywords

BIOLOGY; COGNITIVE SYSTEMS;

EID: 84938215894     PISSN: 13646613     EISSN: 1879307X     Source Type: Journal    
DOI: 10.1016/j.tics.2015.06.006     Document Type: Review
Times cited : (161)

References (86)
  • 1
    • 24344504274 scopus 로고
    • On the ability to inhibit thought and action - a theory of an act of control
    • Logan G.D., Cowan W.B. On the ability to inhibit thought and action - a theory of an act of control. Psychol. Rev. 1984, 91:295-327.
    • (1984) Psychol. Rev. , vol.91 , pp. 295-327
    • Logan, G.D.1    Cowan, W.B.2
  • 2
    • 0037315383 scopus 로고    scopus 로고
    • Horse-race model simulations of the stop-signal procedure
    • Band G.P.H., et al. Horse-race model simulations of the stop-signal procedure. Acta Psychol. 2003, 112:105-142.
    • (2003) Acta Psychol. , vol.112 , pp. 105-142
    • Band, G.P.H.1
  • 3
    • 34248562812 scopus 로고    scopus 로고
    • Inhibitory control in mind and brain: an interactive race model of countermanding saccades
    • Boucher L., et al. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol. Rev. 2007, 114:376-397.
    • (2007) Psychol. Rev. , vol.114 , pp. 376-397
    • Boucher, L.1
  • 4
    • 84878208266 scopus 로고    scopus 로고
    • Current advances and pressing problems in studies of stopping
    • Schall J.D., Godlove D.C. Current advances and pressing problems in studies of stopping. Curr. Opin. Neurobiol. 2012, 22:1012-1021.
    • (2012) Curr. Opin. Neurobiol. , vol.22 , pp. 1012-1021
    • Schall, J.D.1    Godlove, D.C.2
  • 5
    • 0035721481 scopus 로고    scopus 로고
    • Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks
    • Rubia K., et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage 2001, 13:250-261.
    • (2001) Neuroimage , vol.13 , pp. 250-261
    • Rubia, K.1
  • 6
    • 25344443304 scopus 로고    scopus 로고
    • Neural substrates of successful versus unsuccessful stopping in a cognitively challenging event related stop task
    • Rubia K., et al. Neural substrates of successful versus unsuccessful stopping in a cognitively challenging event related stop task. Neuroimage 2001, 13:S351.
    • (2001) Neuroimage , vol.13 , pp. S351
    • Rubia, K.1
  • 7
    • 84917698780 scopus 로고    scopus 로고
    • Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis
    • Rubia K., et al. Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biol. Psychiatry 2014, 76:616-628.
    • (2014) Biol. Psychiatry , vol.76 , pp. 616-628
    • Rubia, K.1
  • 8
    • 64149093013 scopus 로고    scopus 로고
    • Neurodegenerative diseases target large-scale human brain networks
    • Seeley W.W., et al. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62:42-52.
    • (2009) Neuron , vol.62 , pp. 42-52
    • Seeley, W.W.1
  • 9
    • 0033014403 scopus 로고    scopus 로고
    • Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI
    • Rubia K., et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry 1999, 156:891-896.
    • (1999) Am. J. Psychiatry , vol.156 , pp. 891-896
    • Rubia, K.1
  • 10
    • 84905858772 scopus 로고    scopus 로고
    • Damage to the salience network and interactions with the default mode network
    • Jilka S.R., et al. Damage to the salience network and interactions with the default mode network. J. Neurosci. 2014, 34:10798-10807.
    • (2014) J. Neurosci. , vol.34 , pp. 10798-10807
    • Jilka, S.R.1
  • 11
    • 85047104320 scopus 로고    scopus 로고
    • Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans (vol 6, pg 115, 2003)
    • Aron A.R., et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans (vol 6, pg 115, 2003). Nat. Neurosci. 2003, 6:1329.
    • (2003) Nat. Neurosci. , vol.6 , pp. 1329
    • Aron, A.R.1
  • 12
    • 1842524325 scopus 로고    scopus 로고
    • Inhibition and the right inferior frontal cortex
    • Aron A.R., et al. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8:170-177.
    • (2004) Trends Cogn. Sci. , vol.8 , pp. 170-177
    • Aron, A.R.1
  • 13
    • 33645642238 scopus 로고    scopus 로고
    • Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus
    • Aron A.R., Poldrack R.A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 2006, 26:2424-2433.
    • (2006) J. Neurosci. , vol.26 , pp. 2424-2433
    • Aron, A.R.1    Poldrack, R.A.2
  • 14
    • 79955778279 scopus 로고    scopus 로고
    • Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease
    • Swann N., et al. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease. J. Neurosci. 2011, 31:5721-5729.
    • (2011) J. Neurosci. , vol.31 , pp. 5721-5729
    • Swann, N.1
  • 15
    • 84880659841 scopus 로고    scopus 로고
    • A computational model of inhibitory control in frontal cortex and basal ganglia
    • Wiecki T.V., Frank M.J. A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 2013, 120:329-355.
    • (2013) Psychol. Rev. , vol.120 , pp. 329-355
    • Wiecki, T.V.1    Frank, M.J.2
  • 16
    • 84933672040 scopus 로고    scopus 로고
    • Right inferior frontal cortex: addressing the rebuttals
    • Aron A.R., et al. Right inferior frontal cortex: addressing the rebuttals. Front. Hum. Neurosci. 2014, 8:905.
    • (2014) Front. Hum. Neurosci. , vol.8 , pp. 905
    • Aron, A.R.1
  • 17
    • 84897041787 scopus 로고    scopus 로고
    • Inhibition and the right inferior frontal cortex: one decade on
    • Aron A., et al. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 2014, 18:177-185.
    • (2014) Trends Cogn. Sci. , vol.18 , pp. 177-185
    • Aron, A.1
  • 18
    • 84902163821 scopus 로고    scopus 로고
    • A functional network perspective on inhibition and attentional control
    • Erika-Florence M., et al. A functional network perspective on inhibition and attentional control. Nat. Commun. 2014, 5:4073.
    • (2014) Nat. Commun. , vol.5 , pp. 4073
    • Erika-Florence, M.1
  • 19
    • 77249098700 scopus 로고    scopus 로고
    • The role of the right inferior frontal gyrus: inhibition and attentional control
    • Hampshire A., et al. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 2010, 50:1313-1319.
    • (2010) Neuroimage , vol.50 , pp. 1313-1319
    • Hampshire, A.1
  • 20
    • 33947275377 scopus 로고    scopus 로고
    • Effects of focal frontal lesions on response inhibition
    • Picton T.W., et al. Effects of focal frontal lesions on response inhibition. Cereb. Cortex 2007, 17:826-838.
    • (2007) Cereb. Cortex , vol.17 , pp. 826-838
    • Picton, T.W.1
  • 21
    • 60549097602 scopus 로고    scopus 로고
    • Mapping task switching in frontal cortex through neuropsychological group studies
    • Shallice T., et al. Mapping task switching in frontal cortex through neuropsychological group studies. Front. Neurosci. 2008, 2:79-85.
    • (2008) Front. Neurosci. , vol.2 , pp. 79-85
    • Shallice, T.1
  • 23
    • 77950547002 scopus 로고    scopus 로고
    • Distinct frontal systems for response inhibition, attentional capture, and error processing
    • Sharp D.J., et al. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:6106-6111.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 6106-6111
    • Sharp, D.J.1
  • 24
    • 44249094008 scopus 로고    scopus 로고
    • The multiple dimensions of sustained attention
    • Shallice T., et al. The multiple dimensions of sustained attention. Cortex 2008, 44:794-805.
    • (2008) Cortex , vol.44 , pp. 794-805
    • Shallice, T.1
  • 25
    • 43249126813 scopus 로고    scopus 로고
    • Response inhibition and response selection: two sides of the same coin
    • Mostofsky S.H., Simmonds D.J. Response inhibition and response selection: two sides of the same coin. J. Cogn. Neurosci. 2008, 20:751-761.
    • (2008) J. Cogn. Neurosci. , vol.20 , pp. 751-761
    • Mostofsky, S.H.1    Simmonds, D.J.2
  • 26
    • 84857519114 scopus 로고    scopus 로고
    • Cognitive control reflects context monitoring, not motoric stopping, in response inhibition
    • Chatham C.H., et al. Cognitive control reflects context monitoring, not motoric stopping, in response inhibition. PLoS ONE 2012, 7:e31546.
    • (2012) PLoS ONE , vol.7
    • Chatham, C.H.1
  • 27
    • 0032765150 scopus 로고    scopus 로고
    • Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function
    • Braver T.S., et al. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol. Psychiatry 1999, 46:312-328.
    • (1999) Biol. Psychiatry , vol.46 , pp. 312-328
    • Braver, T.S.1
  • 29
    • 84856455781 scopus 로고    scopus 로고
    • The nature and organization of individual differences in executive functions: four general conclusions
    • Miyake A., Friedman N.P. The nature and organization of individual differences in executive functions: four general conclusions. Curr. Dir. Psychol. Sci. 2012, 21:8-14.
    • (2012) Curr. Dir. Psychol. Sci. , vol.21 , pp. 8-14
    • Miyake, A.1    Friedman, N.P.2
  • 30
    • 84872450863 scopus 로고    scopus 로고
    • Executive functions
    • Diamond A. Executive functions. Annu. Rev. Psychol. 2013, 64:135-168.
    • (2013) Annu. Rev. Psychol. , vol.64 , pp. 135-168
    • Diamond, A.1
  • 31
    • 84894493490 scopus 로고    scopus 로고
    • The persistence of cognitive deficits in remitted and unremitted ADHD: a case for the state-independence of response inhibition
    • McAuley T., et al. The persistence of cognitive deficits in remitted and unremitted ADHD: a case for the state-independence of response inhibition. J. Child Psychol. Psychiatry 2014, 55:292-300.
    • (2014) J. Child Psychol. Psychiatry , vol.55 , pp. 292-300
    • McAuley, T.1
  • 32
    • 33746875955 scopus 로고    scopus 로고
    • Accounting for cognitive aging: context processing, inhibition or processing speed?
    • Rush B.K., et al. Accounting for cognitive aging: context processing, inhibition or processing speed?. Neuropsychol. Dev. Cogn. B: Aging Neuropsychol. Cogn. 2006, 13:588-610.
    • (2006) Neuropsychol. Dev. Cogn. B: Aging Neuropsychol. Cogn. , vol.13 , pp. 588-610
    • Rush, B.K.1
  • 33
    • 0036138558 scopus 로고    scopus 로고
    • Individual inconsistency across measures of inhibition: an investigation of the construct validity of inhibition in older adults
    • Shilling V.M., et al. Individual inconsistency across measures of inhibition: an investigation of the construct validity of inhibition in older adults. Neuropsychologia 2002, 40:605-619.
    • (2002) Neuropsychologia , vol.40 , pp. 605-619
    • Shilling, V.M.1
  • 34
    • 1342332346 scopus 로고    scopus 로고
    • The relations among inhibition and interference control functions: a latent-variable analysis
    • Friedman N.P., Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J. Exp. Psychol. 2004, 133:101-135.
    • (2004) J. Exp. Psychol. , vol.133 , pp. 101-135
    • Friedman, N.P.1    Miyake, A.2
  • 36
    • 84875453106 scopus 로고    scopus 로고
    • The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance
    • Salinas E., Stanford T.R. The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J. Neurosci. 2013, 33:5668-5685.
    • (2013) J. Neurosci. , vol.33 , pp. 5668-5685
    • Salinas, E.1    Stanford, T.R.2
  • 37
    • 68849095529 scopus 로고    scopus 로고
    • Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition
    • Duann J.R., et al. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J. Neurosci. 2009, 29:10171-10179.
    • (2009) J. Neurosci. , vol.29 , pp. 10171-10179
    • Duann, J.R.1
  • 38
    • 0035112256 scopus 로고    scopus 로고
    • Error-related brain activation during a Go/NoGo response inhibition task
    • Menon V., et al. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 2001, 12:131-143.
    • (2001) Hum. Brain Mapp. , vol.12 , pp. 131-143
    • Menon, V.1
  • 39
    • 61549115936 scopus 로고    scopus 로고
    • Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study
    • Chamberlain S.R., et al. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol. Psychiatry 2009, 65:550-555.
    • (2009) Biol. Psychiatry , vol.65 , pp. 550-555
    • Chamberlain, S.R.1
  • 40
    • 78651321586 scopus 로고    scopus 로고
    • Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning
    • Hampshire A., et al. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cereb. Cortex 2011, 21:1-10.
    • (2011) Cereb. Cortex , vol.21 , pp. 1-10
    • Hampshire, A.1
  • 41
    • 84937762521 scopus 로고    scopus 로고
    • Putting the brakes on inhibitory models of frontal lobe function
    • Hampshire A. Putting the brakes on inhibitory models of frontal lobe function. Neuroimage 2015, 113:340-355.
    • (2015) Neuroimage , vol.113 , pp. 340-355
    • Hampshire, A.1
  • 42
    • 63849206869 scopus 로고    scopus 로고
    • Selective tuning of the right inferior frontal gyrus during target detection
    • Hampshire A., et al. Selective tuning of the right inferior frontal gyrus during target detection. Cogn. Affect. Behav. Neurosci. 2009, 9:103-112.
    • (2009) Cogn. Affect. Behav. Neurosci. , vol.9 , pp. 103-112
    • Hampshire, A.1
  • 43
    • 0035511995 scopus 로고    scopus 로고
    • An adaptive coding model of neural function in prefrontal cortex
    • Duncan J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2001, 2:820-829.
    • (2001) Nat. Rev. Neurosci. , vol.2 , pp. 820-829
    • Duncan, J.1
  • 44
    • 0034307762 scopus 로고    scopus 로고
    • Common regions of the human frontal lobe recruited by diverse cognitive demands
    • Duncan J., Owen A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 2000, 23:475-483.
    • (2000) Trends Neurosci. , vol.23 , pp. 475-483
    • Duncan, J.1    Owen, A.M.2
  • 45
    • 84884768826 scopus 로고    scopus 로고
    • Broad domain generality in focal regions of frontal and parietal cortex
    • Fedorenko E., et al. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:16616-16621.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 16616-16621
    • Fedorenko, E.1
  • 46
    • 49649086424 scopus 로고    scopus 로고
    • The target selective neural response - similarity, ambiguity, and learning effects
    • Hampshire A., et al. The target selective neural response - similarity, ambiguity, and learning effects. PLoS ONE 2008, 3:e2520.
    • (2008) PLoS ONE , vol.3
    • Hampshire, A.1
  • 47
    • 0034698209 scopus 로고    scopus 로고
    • A neural basis for general intelligence
    • Duncan J., et al. A neural basis for general intelligence. Science 2000, 289:457-460.
    • (2000) Science , vol.289 , pp. 457-460
    • Duncan, J.1
  • 48
    • 33645084672 scopus 로고    scopus 로고
    • Prefrontal cortex and Spearman's g
    • Oxford University Press, J. Duncan (Ed.)
    • Duncan J. Prefrontal cortex and Spearman's g. Measuring the Mind: Speed, Control, and Age 2005, 249-272. Oxford University Press. J. Duncan (Ed.).
    • (2005) Measuring the Mind: Speed, Control, and Age , pp. 249-272
    • Duncan, J.1
  • 49
    • 34447576977 scopus 로고    scopus 로고
    • The cognitive control network: integrated cortical regions with dissociable functions
    • Cole M.W., Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 2007, 37:343-360.
    • (2007) Neuroimage , vol.37 , pp. 343-360
    • Cole, M.W.1    Schneider, W.2
  • 50
    • 33847343843 scopus 로고    scopus 로고
    • Dissociable intrinsic connectivity networks for salience processing and executive control
    • Seeley W.W., et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007, 27:2349-2356.
    • (2007) J. Neurosci. , vol.27 , pp. 2349-2356
    • Seeley, W.W.1
  • 51
    • 0034928713 scopus 로고    scopus 로고
    • An integrative theory of prefrontal cortex function
    • Miller E.K., Cohen J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24:167-202.
    • (2001) Annu. Rev. Neurosci. , vol.24 , pp. 167-202
    • Miller, E.K.1    Cohen, J.D.2
  • 52
    • 0035846981 scopus 로고    scopus 로고
    • Categorical representation of visual stimuli in the primate prefrontal cortex
    • Freedman D.J., et al. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 2001, 291:312-316.
    • (2001) Science , vol.291 , pp. 312-316
    • Freedman, D.J.1
  • 53
    • 84876806635 scopus 로고    scopus 로고
    • Dynamic coding for cognitive control in prefrontal cortex
    • Stokes M.G., et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 2013, 78:364-375.
    • (2013) Neuron , vol.78 , pp. 364-375
    • Stokes, M.G.1
  • 54
    • 0028951934 scopus 로고
    • Neural mechanisms of selective visual attention
    • Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 1995, 18:193-222.
    • (1995) Annu. Rev. Neurosci. , vol.18 , pp. 193-222
    • Desimone, R.1    Duncan, J.2
  • 55
    • 0032418270 scopus 로고    scopus 로고
    • Responses of neurons in inferior temporal cortex during memory-guided visual search
    • Chelazzi L., et al. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 1998, 80:2918-2940.
    • (1998) J. Neurophysiol. , vol.80 , pp. 2918-2940
    • Chelazzi, L.1
  • 56
    • 80053130889 scopus 로고    scopus 로고
    • A unified framework for inhibitory control
    • Munakata Y., et al. A unified framework for inhibitory control. Trends Cogn. Sci. 2011, 15:453-459.
    • (2011) Trends Cogn. Sci. , vol.15 , pp. 453-459
    • Munakata, Y.1
  • 57
    • 34249977848 scopus 로고    scopus 로고
    • Selective tuning of the blood oxygenation level-dependent response during simple target detection dissociates human frontoparietal subregions
    • Hampshire A., et al. Selective tuning of the blood oxygenation level-dependent response during simple target detection dissociates human frontoparietal subregions. J. Neurosci. 2007, 27:6219-6223.
    • (2007) J. Neurosci. , vol.27 , pp. 6219-6223
    • Hampshire, A.1
  • 58
    • 0036300618 scopus 로고    scopus 로고
    • Filtering of neural signals by focused attention in the monkey prefrontal cortex
    • Everling S., et al. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat. Neurosci. 2002, 5:671-676.
    • (2002) Nat. Neurosci. , vol.5 , pp. 671-676
    • Everling, S.1
  • 59
    • 70349917963 scopus 로고    scopus 로고
    • Detection of fixed and variable targets in the monkey prefrontal cortex
    • Kusunoki M., et al. Detection of fixed and variable targets in the monkey prefrontal cortex. Cereb. Cortex 2009, 19:2522-2534.
    • (2009) Cereb. Cortex , vol.19 , pp. 2522-2534
    • Kusunoki, M.1
  • 60
    • 0037057758 scopus 로고    scopus 로고
    • Monitoring and control of action by the frontal lobes
    • Schall J.D., et al. Monitoring and control of action by the frontal lobes. Neuron 2002, 36:309-322.
    • (2002) Neuron , vol.36 , pp. 309-322
    • Schall, J.D.1
  • 61
    • 78049521176 scopus 로고    scopus 로고
    • Supplementary motor area exerts proactive and reactive control of arm movements
    • Chen X., et al. Supplementary motor area exerts proactive and reactive control of arm movements. J. Neurosci. 2010, 30:14657-14675.
    • (2010) J. Neurosci. , vol.30 , pp. 14657-14675
    • Chen, X.1
  • 62
    • 76649084883 scopus 로고    scopus 로고
    • Role of supplementary eye field in saccade initiation: executive, not direct, control
    • Stuphorn V., et al. Role of supplementary eye field in saccade initiation: executive, not direct, control. J. Neurophysiol. 2010, 103:801-816.
    • (2010) J. Neurophysiol. , vol.103 , pp. 801-816
    • Stuphorn, V.1
  • 63
    • 0141642194 scopus 로고    scopus 로고
    • Performance monitoring by the anterior cingulate cortex during saccade countermanding
    • Ito S., et al. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 2003, 302:120-122.
    • (2003) Science , vol.302 , pp. 120-122
    • Ito, S.1
  • 64
    • 0034649633 scopus 로고    scopus 로고
    • Performance monitoring by the supplementary eye field
    • Stuphorn V., et al. Performance monitoring by the supplementary eye field. Nature 2000, 408:857-860.
    • (2000) Nature , vol.408 , pp. 857-860
    • Stuphorn, V.1
  • 65
    • 0033067746 scopus 로고    scopus 로고
    • Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study
    • Toni I., Passingham R.E. Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res. 1999, 127:19-32.
    • (1999) Exp. Brain Res. , vol.127 , pp. 19-32
    • Toni, I.1    Passingham, R.E.2
  • 66
    • 0035163414 scopus 로고    scopus 로고
    • Learning arbitrary visuomotor associations: temporal dynamic of brain activity
    • Toni I., et al. Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage 2001, 14:1048-1057.
    • (2001) Neuroimage , vol.14 , pp. 1048-1057
    • Toni, I.1
  • 67
    • 84892747248 scopus 로고    scopus 로고
    • The role of the posterior cingulate cortex in cognition and disease
    • Leech R., Sharp D.J. The role of the posterior cingulate cortex in cognition and disease. Brain 2014, 137:12-32.
    • (2014) Brain , vol.137 , pp. 12-32
    • Leech, R.1    Sharp, D.J.2
  • 68
    • 84891796321 scopus 로고    scopus 로고
    • The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention
    • Hellyer P.J., et al. The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 2014, 34:451-461.
    • (2014) J. Neurosci. , vol.34 , pp. 451-461
    • Hellyer, P.J.1
  • 69
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • Deco G., et al. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10302-10307.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 10302-10307
    • Deco, G.1
  • 70
    • 84870055900 scopus 로고    scopus 로고
    • How can investigation of network function inform rehabilitation after traumatic brain injury?
    • Ham T.E., Sharp D.J. How can investigation of network function inform rehabilitation after traumatic brain injury?. Curr. Opin. Neurol. 2012, 25:662-669.
    • (2012) Curr. Opin. Neurol. , vol.25 , pp. 662-669
    • Ham, T.E.1    Sharp, D.J.2
  • 71
    • 33750929375 scopus 로고    scopus 로고
    • Fractionating attentional control using event-related fMRI
    • Hampshire A., Owen A.M. Fractionating attentional control using event-related fMRI. Cereb. Cortex 2006, 16:1679-1689.
    • (2006) Cereb. Cortex , vol.16 , pp. 1679-1689
    • Hampshire, A.1    Owen, A.M.2
  • 72
    • 84873825882 scopus 로고    scopus 로고
    • An fMRI method for assessing residual reasoning ability in vegetative state patients
    • Hampshire A., et al. An fMRI method for assessing residual reasoning ability in vegetative state patients. Neuroimage 2013, 2:174-183.
    • (2013) Neuroimage , vol.2 , pp. 174-183
    • Hampshire, A.1
  • 73
    • 84895926390 scopus 로고    scopus 로고
    • Network dysfunction after traumatic brain injury
    • Sharp D.J., et al. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 2014, 10:156-166.
    • (2014) Nat. Rev. Neurol. , vol.10 , pp. 156-166
    • Sharp, D.J.1
  • 74
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 2004, 23:137-152.
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 137-152
    • Beckmann, C.F.1    Smith, S.M.2
  • 75
    • 84929692586 scopus 로고    scopus 로고
    • Dynamic network mechanisms of relational integration
    • Parkin B., et al. Dynamic network mechanisms of relational integration. J. Neurosci. 2015, 35:7660-7673.
    • (2015) J. Neurosci. , vol.35 , pp. 7660-7673
    • Parkin, B.1
  • 76
    • 84871383189 scopus 로고    scopus 로고
    • Fractionating human intelligence
    • Hampshire A., et al. Fractionating human intelligence. Neuron 2012, 76:1225-1237.
    • (2012) Neuron , vol.76 , pp. 1225-1237
    • Hampshire, A.1
  • 77
    • 79954454471 scopus 로고    scopus 로고
    • Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating
    • Levy B.J., Wagner A.D. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann. N. Y. Acad. Sci. 2011, 1224:40-62.
    • (2011) Ann. N. Y. Acad. Sci. , vol.1224 , pp. 40-62
    • Levy, B.J.1    Wagner, A.D.2
  • 78
    • 33748796093 scopus 로고    scopus 로고
    • Consistent resting-state networks across healthy subjects
    • Damoiseaux J.S., et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:13848-13853.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 13848-13853
    • Damoiseaux, J.S.1
  • 79
    • 69149106062 scopus 로고    scopus 로고
    • Correspondence of the brain's functional architecture during activation and rest
    • Smith S.M., et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13040-13045.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13040-13045
    • Smith, S.M.1
  • 80
    • 39649100407 scopus 로고    scopus 로고
    • A dual-networks architecture of top-down control
    • Dosenbach N.U., et al. A dual-networks architecture of top-down control. Trends Cogn. Sci. 2008, 12:99-105.
    • (2008) Trends Cogn. Sci. , vol.12 , pp. 99-105
    • Dosenbach, N.U.1
  • 81
    • 33646838198 scopus 로고    scopus 로고
    • A core system for the implementation of task sets
    • Dosenbach N.U., et al. A core system for the implementation of task sets. Neuron 2006, 50:799-812.
    • (2006) Neuron , vol.50 , pp. 799-812
    • Dosenbach, N.U.1
  • 82
    • 80055109662 scopus 로고    scopus 로고
    • Behavioral interpretations of intrinsic connectivity networks
    • Laird A.R., et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 2011, 23:4022-4037.
    • (2011) J. Cogn. Neurosci. , vol.23 , pp. 4022-4037
    • Laird, A.R.1
  • 83
    • 80051988794 scopus 로고    scopus 로고
    • Default mode network functional and structural connectivity after traumatic brain injury
    • Sharp D.J., et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011, 134:2233-2247.
    • (2011) Brain , vol.134 , pp. 2233-2247
    • Sharp, D.J.1
  • 84
    • 78650991678 scopus 로고    scopus 로고
    • Clinical applications of resting state functional connectivity
    • Fox M.D., Greicius M. Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 2010, 4:19.
    • (2010) Front. Syst. Neurosci. , vol.4 , pp. 19
    • Fox, M.D.1    Greicius, M.2
  • 85
    • 52049121840 scopus 로고    scopus 로고
    • Resting-state functional connectivity in neuropsychiatric disorders
    • Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008, 21:424-430.
    • (2008) Curr. Opin. Neurol. , vol.21 , pp. 424-430
    • Greicius, M.1
  • 86
    • 80054696597 scopus 로고    scopus 로고
    • Resting-state brain networks: literature review and clinical applications
    • Rosazza C., Minati L. Resting-state brain networks: literature review and clinical applications. Neurol. Sci. 2011, 32:773-785.
    • (2011) Neurol. Sci. , vol.32 , pp. 773-785
    • Rosazza, C.1    Minati, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.