메뉴 건너뛰기




Volumn 169, Issue , 2015, Pages 225-235

Learning Resource-Aware Classifiers for Mobile Devices: From Regularization to Energy Efficiency

Author keywords

Energy efficiency; Local Rademacher Complexity; Mobile devices; Performance Assessment; Supervised Learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; ELECTRIC BATTERIES; LEARNING ALGORITHMS; LEARNING SYSTEMS; MOBILE DEVICES; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS; SMARTPHONES; SUPERVISED LEARNING;

EID: 84938211160     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.12.099     Document Type: Article
Times cited : (15)

References (43)
  • 6
    • 0242695713 scopus 로고    scopus 로고
    • Kerneltron. support vector "machine" in silicon
    • Genov R., Cauwenberghs G. Kerneltron. support vector "machine" in silicon. IEEE Trans. Neural Netw. 2003, 14(5):1426-1434.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.5 , pp. 1426-1434
    • Genov, R.1    Cauwenberghs, G.2
  • 7
    • 70649086175 scopus 로고    scopus 로고
    • Hardware-friendly higher-order neural network training using distributed evolutionary algorithms
    • Epitropakis M., Plagianakos V., Vrahatis M. Hardware-friendly higher-order neural network training using distributed evolutionary algorithms. Appl. Soft Comput. 2010, 10(2):398-408.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.2 , pp. 398-408
    • Epitropakis, M.1    Plagianakos, V.2    Vrahatis, M.3
  • 8
    • 84856105970 scopus 로고    scopus 로고
    • Pervasive computing at scale. transforming the state of the art
    • Cook D.J., Das S.K. Pervasive computing at scale. transforming the state of the art. Pervasive Mob. Comput. 2012, 8(1):22-35.
    • (2012) Pervasive Mob. Comput. , vol.8 , Issue.1 , pp. 22-35
    • Cook, D.J.1    Das, S.K.2
  • 11
    • 55949086839 scopus 로고    scopus 로고
    • A support vector machine with integer parameters
    • Anguita D., Ghio A., Pischiutta S., Ridella S. A support vector machine with integer parameters. Neurocomputing 2008, 72(1):480-489.
    • (2008) Neurocomputing , vol.72 , Issue.1 , pp. 480-489
    • Anguita, D.1    Ghio, A.2    Pischiutta, S.3    Ridella, S.4
  • 12
    • 79958278029 scopus 로고    scopus 로고
    • Effects of reduced precision on floating-point svm classification accuracy
    • Lesser B., Mücke M., Gansterer W. Effects of reduced precision on floating-point svm classification accuracy. Procedia Comput. Sci. 2011, 4:508-517.
    • (2011) Procedia Comput. Sci. , vol.4 , pp. 508-517
    • Lesser, B.1    Mücke, M.2    Gansterer, W.3
  • 14
    • 0000080373 scopus 로고
    • The glivenko-cantelli problem
    • Talagrand M. The glivenko-cantelli problem. Ann. Probab. 1987, 15(3):837-870.
    • (1987) Ann. Probab. , vol.15 , Issue.3 , pp. 837-870
    • Talagrand, M.1
  • 15
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities. risk bounds and structural results
    • Bartlett P.L., Mendelson S. Rademacher and Gaussian complexities. risk bounds and structural results. J. Mach. Learn. Res. 2003, 3:463-482.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 16
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization
    • Koltchinskii V. Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Stat. 2006, 34(6):2593-2656.
    • (2006) Ann. Stat. , vol.34 , Issue.6 , pp. 2593-2656
    • Koltchinskii, V.1
  • 21
    • 34547313726 scopus 로고    scopus 로고
    • Discussion. Local Rademacher complexities and oracle inequalities in risk minimization
    • Blanchard G., Massart P. Discussion. Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Stat. 2006, 34(6):2664-2671.
    • (2006) Ann. Stat. , vol.34 , Issue.6 , pp. 2664-2671
    • Blanchard, G.1    Massart, P.2
  • 22
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • Audibert J.Y., Tsybakov A.B. Fast learning rates for plug-in classifiers. Ann. Stat. 2007, 35(2):608-633.
    • (2007) Ann. Stat. , vol.35 , Issue.2 , pp. 608-633
    • Audibert, J.Y.1    Tsybakov, A.B.2
  • 24
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • Steinwart I., Scovel C. Fast rates for support vector machines using Gaussian kernels. Ann. Stat. 2007, 35(2):575-607.
    • (2007) Ann. Stat. , vol.35 , Issue.2 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 25
    • 56349085088 scopus 로고    scopus 로고
    • Using variable neighborhood search to improve the support vector machine performance in embedded automotive applications
    • E. Alba, D. Anguita, A. Ghio, S. Ridella, Using variable neighborhood search to improve the support vector machine performance in embedded automotive applications, in: IEEE International Joint Conference on Neural Networks, 2008.
    • (2008) IEEE International Joint Conference on Neural Networks
    • Alba, E.1    Anguita, D.2    Ghio, A.3    Ridella, S.4
  • 29
    • 84869887831 scopus 로고    scopus 로고
    • In-sample model selection for trimmed hinge loss support vector machine
    • Anguita D., Ghio A., Oneto L., Ridella S. In-sample model selection for trimmed hinge loss support vector machine. Neural Process. Lett. 2012, 36(3):275-283.
    • (2012) Neural Process. Lett. , vol.36 , Issue.3 , pp. 275-283
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 32
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • McDiarmid C. On the method of bounded differences. Surv. Combin. 1989, 141(1):148-188.
    • (1989) Surv. Combin. , vol.141 , Issue.1 , pp. 148-188
    • McDiarmid, C.1
  • 33
    • 84938215095 scopus 로고    scopus 로고
    • User-manual cplex 12.6, IBM Software Group
    • User-manual cplex 12.6, IBM Software Group 2014.
    • (2014)
  • 35
    • 4444351215 scopus 로고    scopus 로고
    • Discrete support vector decision trees via Tabu search
    • Orsenigo C., Vercellis C. Discrete support vector decision trees via Tabu search. Comput. Stat. Data Anal. 2004, 47(2):311-322.
    • (2004) Comput. Stat. Data Anal. , vol.47 , Issue.2 , pp. 311-322
    • Orsenigo, C.1    Vercellis, C.2
  • 39
    • 84883731834 scopus 로고    scopus 로고
    • Energy efficient smartphone-based activity recognition using fixed-point arithmetic
    • Anguita D., Ghio A., Oneto L., Parra X., Reyes-Ortiz J.L. Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 2013, 19(6):1295-1314.
    • (2013) J. Univ. Comput. Sci. , vol.19 , Issue.6 , pp. 1295-1314
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Parra, X.4    Reyes-Ortiz, J.L.5
  • 40
    • 33748420535 scopus 로고    scopus 로고
    • Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models
    • Felicity R.A., Eliathamby A., Nigel H.L., Branko G.C. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas. 2006, 27(10):935-965.
    • (2006) Physiol. Meas. , vol.27 , Issue.10 , pp. 935-965
    • Felicity, R.A.1    Eliathamby, A.2    Nigel, H.L.3    Branko, G.C.4
  • 41
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository
    • K. Bache, M. Lichman, UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml.
    • (2013)
    • Bache, K.1    Lichman, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.