-
1
-
-
0343874234
-
Non-monotonic learning
-
D. Michie (eds). Oxford University Press London
-
Bain, M.; & Muggleton, S. H. (1991). Non-monotonic learning. In D. Michie (Ed.), Machine intelligence (Vol. 12, pp. 105-120). London: Oxford University Press.
-
(1991)
Machine Intelligence
, vol.12
, pp. 105-120
-
-
Bain, M.1
Muggleton, S.H.2
-
4
-
-
78650121288
-
Discovery of abstract concepts by a robot
-
Springer Berlin
-
Bratko, I. (2010). Discovery of abstract concepts by a robot. In LNAI: Vol. 6332. Proceedings of discovery science 2010 (pp. 372-379). Berlin: Springer.
-
(2010)
Proceedings of Discovery Science 2010 LNAI
, vol.6332
, pp. 372-379
-
-
Bratko, I.1
-
8
-
-
50649120827
-
Learning probabilistic logic models from probabilistic examples
-
10.1007/s10994-008-5076-4
-
J. Chen S. H. Muggleton J. Santos 2008 Learning probabilistic logic models from probabilistic examples Machine Learning 73 1 55 85 10.1007/s10994-008-5076-4
-
(2008)
Machine Learning
, vol.73
, Issue.1
, pp. 55-85
-
-
Chen, J.1
Muggleton, S.H.2
Santos, J.3
-
11
-
-
0035312953
-
Relational learning with statistical predicate invention: Better models for hypertext
-
DOI 10.1023/A:1007676901476
-
M. Craven S. Slattery 2001 Relational learning with statistical predicate invention: Better models for hypertext Machine Learning 43 1/2 97 119 0988.68818 (Pubitemid 32286617)
-
(2001)
Machine Learning
, vol.43
, Issue.1-2
, pp. 97-119
-
-
Craven, M.1
Slattery, S.2
-
12
-
-
0035451897
-
Parameter estimation in stochastic logic programs
-
DOI 10.1023/A:1010924021315, Inductive Logic Programming
-
J. Cussens 2001 Parameter estimation in stochastic logic programs Machine Learning 44 3 245 271 0986.68010 (Pubitemid 32761112)
-
(2001)
Machine Learning
, vol.44
, Issue.3
, pp. 245-271
-
-
Cussens, J.1
-
14
-
-
0031198976
-
Logical settings for concept-learning
-
L. De Raedt 1997 Logical settings for concept-learning Artificial Intelligence 95 1 197 201
-
(1997)
Artificial Intelligence
, vol.95
, Issue.1
, pp. 197-201
-
-
De Raedt, L.1
-
18
-
-
0343150490
-
Multiple predicate learning in two inductive logic programming settings
-
0846.68087
-
L. De Raedt N. Lavrač 1996 Multiple predicate learning in two inductive logic programming settings Journal on Pure and Applied Logic 4 2 227 254 0846.68087
-
(1996)
Journal on Pure and Applied Logic
, vol.4
, Issue.2
, pp. 227-254
-
-
De Raedt, L.1
Lavrač, N.2
-
20
-
-
52449101351
-
-
L. De Raedt P. Frasconi K. Kersting S. H. Muggleton (eds). Springer Berlin 1132.68007
-
De Raedt, L.; Frasconi, P.; Kersting, K.; & Muggleton, S. H. (Eds.) (2008). LNAI: Vol. 4911. Probabilistic inductive logic programming. Berlin: Springer.
-
(2008)
Probabilistic Inductive Logic Programming LNAI
, vol.4911
-
-
-
21
-
-
33947709517
-
Discovery of relational association rules
-
S. Džeroski N. Lavrač (eds). Springer Berlin
-
Dehaspe, L.; & Toivonen, H. (2001). Discovery of relational association rules. In Džeroski, S.; & Lavrač, N. (Eds.), Relational data mining (pp. 189-212). Berlin: Springer.
-
(2001)
Relational Data Mining
, pp. 189-212
-
-
Dehaspe, L.1
Toivonen, H.2
-
23
-
-
0003323974
-
The application of Inductive Logic Programming to finite element mesh design
-
S. H. Muggleton (eds). Academic Press London
-
Dolsak, B.; & Muggleton, S. H. (1992). The application of Inductive Logic Programming to finite element mesh design. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 453-472). London: Academic Press.
-
(1992)
Inductive Logic Programming
, pp. 453-472
-
-
Dolsak, B.1
Muggleton, S.H.2
-
24
-
-
33750705609
-
Unifying logical and statistical AI
-
Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
-
Domingos, P. S.; Kok, S.; Poon, H.; Richardson, M.; & Singla, P. (2006). Unifying logical and statistical ai. In Proceedings of the twenty-first national conference on artificial intelligence, AAAI06 (pp. 2-7). Menlo Park/Cambridge: AAAI Press/MIT Press. (Pubitemid 44705255)
-
(2006)
Proceedings of the National Conference on Artificial Intelligence
, vol.1
, pp. 2-7
-
-
Domingos, P.1
Kok, S.2
Poon, H.3
Richardson, M.4
Singla, P.5
-
25
-
-
0011177327
-
-
S. Džeroski N. Lavrač (eds). Springer Berlin 1003.68039
-
Džeroski, S.; & Lavrač, N. (Eds.) (2001). Relational data mining. Berlin: Springer.
-
(2001)
Relational Data Mining
-
-
-
30
-
-
0344889711
-
Inducing temporal fault diagnostic rules from a qualitative model
-
S. H. Muggleton (eds). Academic Press London
-
Feng, C. (1992). Inducing temporal fault diagnostic rules from a qualitative model. In S. H. Muggleton (Ed.), Inductive logic programming. London: Academic Press.
-
(1992)
Inductive Logic Programming
-
-
Feng, C.1
-
31
-
-
85028883412
-
Predicate invention in inductive data engineering
-
P. B. Brazdil (eds). Springer Berlin
-
Flach, P. (1993). Predicate invention in inductive data engineering. In P. B. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Machine learning: ECML-93 (pp. 83-94). Berlin: Springer.
-
(1993)
Machine Learning: ECML-93 Lecture Notes in Artificial Intelligence
, vol.667
, pp. 83-94
-
-
Flach, P.1
-
34
-
-
0041779094
-
Learning probabilistic relational models
-
S. Džeroski N. Lavrač (eds). Springer Berlin
-
Getoor, L.; Friedman, N.; Koller, D.; & Pfeffer, A. (2001). Learning probabilistic relational models. In Džeroski, S.; & Lavrač, N. (Eds.), Relational data mining (pp. 307-335). Berlin: Springer.
-
(2001)
Relational Data Mining
, pp. 307-335
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
-
37
-
-
3543077604
-
Induction as consequence finding
-
1101.68078
-
K. Inoue 2004 Induction as consequence finding Machine Learning 55 109 135 1101.68078
-
(2004)
Machine Learning
, vol.55
, pp. 109-135
-
-
Inoue, K.1
-
38
-
-
77955022038
-
Discovering rules by meta-level abduction
-
L. De Raedt (eds). Springer Berlin
-
Inoue, K.; Furukawa, K.; Kobayashiand, I.; & Nabeshima, H. (2010). Discovering rules by meta-level abduction. In L. De Raedt (Ed.), LNAI: Vol. 5989. Proceedings of the nineteenth international conference on inductive logic programming (ILP09) (pp. 49-64). Berlin: Springer.
-
(2010)
Proceedings of the Nineteenth International Conference on Inductive Logic Programming (ILP09) LNAI
, vol.5989
, pp. 49-64
-
-
Inoue, K.1
Furukawa, K.2
Kobayashiand, I.3
Nabeshima, H.4
-
39
-
-
84949187512
-
Towards Combining Inductive Logic Programming with Bayesian Networks
-
Kersting, K.; & De Raedt, L. (2001). Towards combining inductive logic programming with bayesian networks. In LNAI: Vol. 2157. Proceedings of the eleventh international conference on inductive logic programming (pp. 118-131). Berlin: Springer. (Pubitemid 33332602)
-
(2001)
Lecture Notes in Computer Science
, Issue.2157
, pp. 118-131
-
-
Kersting, K.1
De Raedt, L.2
-
44
-
-
1642336155
-
Functional genomic hypothesis generation and experimentation by a robot scientist
-
DOI 10.1038/nature02236
-
R. D. King K. E. Whelan F. M. Jones P. K. G. Reiser C. H. Bryant S. H. Muggleton D. B. Kell S. G. Oliver 2004 Functional genomic hypothesis generation and experimentation by a robot scientist Nature 427 247 252 (Pubitemid 38112040)
-
(2004)
Nature
, vol.427
, Issue.6971
, pp. 247-252
-
-
King, R.D.1
Whelan, K.E.2
Jones, F.M.3
Reiser, P.G.K.4
Bryant, C.H.5
Muggleton, S.H.6
Kell, D.B.7
Oliver, S.G.8
-
45
-
-
64249139133
-
The automation of science
-
R. D. King J. Rowland S. G. Oliver M. Young W. Aubrey E. Byrne M. Liakata M. Markham P. Pir L. N. Soldatova A. Aparkes K. E. Whelan A. Clare 2009 The automation of science Science 324 5923 85 89
-
(2009)
Science
, vol.324
, Issue.5923
, pp. 85-89
-
-
King, R.D.1
Rowland, J.2
Oliver, S.G.3
Young, M.4
Aubrey, W.5
Byrne, E.6
Liakata, M.7
Markham, M.8
Pir, P.9
Soldatova, L.N.10
Aparkes, A.11
Whelan, K.E.12
Clare, A.13
-
47
-
-
1942515438
-
Propositionalization approaches to relational data mining
-
S. Džeroski N. Lavrač (eds). Springer Berlin
-
Kramer, S.; Lavrač, N.; & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262-291). Berlin: Springer.
-
(2001)
Relational Data Mining
, pp. 262-291
-
-
Kramer, S.1
Lavrač, N.2
Flach, P.3
-
48
-
-
84937420049
-
Transformation-Based Learning Using Multirelational Aggregation
-
Krogel, M.-A.; & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation. In LNCS: Vol. 2157. Inductive logic programming (pp. 142-155). (Pubitemid 33332604)
-
(2001)
Lecture Notes in Computer Science
, Issue.2157
, pp. 142-155
-
-
Krogel, M.-A.1
Wrobel, S.2
-
52
-
-
7444259548
-
Bridging the gap between horn clausal logic and description logics in inductive learning
-
Springer Berlin
-
Lisi, F. A.; & Malerba, D. (2003). Bridging the gap between horn clausal logic and description logics in inductive learning. In LNCS: Vol. 2829. AI IA 2003: Advances in artificial intelligence. Berlin: Springer.
-
(2003)
AI IA 2003: Advances in Artificial Intelligence LNCS
, vol.2829
-
-
Lisi, F.A.1
Malerba, D.2
-
55
-
-
57749188213
-
Lifted probabilistic inference with counting formulas
-
Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; & Kaelbling, L. P. (2008). Lifted probabilistic inference with counting formulas. In Proceedings of the twenty third conference on artificial intelligence (AAAI).
-
(2008)
Proceedings of the Twenty Third Conference on Artificial Intelligence (AAAI)
-
-
Milch, B.1
Zettlemoyer, L.S.2
Kersting, K.3
Haimes, M.4
Kaelbling, L.P.5
-
56
-
-
0004864950
-
-
Academic Press London
-
Morik, K.; Wrobel, S.; Kietz, J.; & Emde, W. (1993). Knowledge acquisition and machine learning: theory, methods and applications. London: Academic Press.
-
(1993)
Knowledge Acquisition and Machine Learning: Theory, Methods and Applications
-
-
Morik, K.1
Wrobel, S.2
Kietz, J.3
Emde, W.4
-
57
-
-
84957882641
-
Learning Programs in the Event Calculus
-
Inductive Logic Programming
-
Moyle, S.; & Muggleton, S. H. (1997). Learning programs in the event calculus. In N. Lavrač & S. Džeroski (Eds.), LNAI: Vol. 1297. Proceedings of the seventh inductive logic programming workshop (ILP97) (pp. 205-212). Berlin: Springer. (Pubitemid 127124392)
-
(1997)
Lecture Notes in Computer Science
, Issue.1297
, pp. 205-212
-
-
Moyle, S.1
Muggleton, S.2
-
58
-
-
85167864773
-
Duce, an oracle based approach to constructive induction
-
Kaufmann Los Altos
-
Muggleton, S. H. (1987). Duce, an oracle based approach to constructive induction. In IJCAI-87 (pp. 287-292). Los Altos: Kaufmann.
-
(1987)
IJCAI-87
, pp. 287-292
-
-
Muggleton, S.H.1
-
59
-
-
0000640432
-
Inductive logic programming
-
0712.68022
-
S. H. Muggleton 1991 Inductive logic programming New Generation Computing 8 4 295 318 0712.68022
-
(1991)
New Generation Computing
, vol.8
, Issue.4
, pp. 295-318
-
-
Muggleton, S.H.1
-
60
-
-
0004109056
-
-
S. H. Muggleton (eds). Academic Press San Diego 0838.68093
-
Muggleton, S. H. (Ed.) (1992). Inductive logic programming. San Diego: Academic Press.
-
(1992)
Inductive Logic Programming
-
-
-
61
-
-
77951503082
-
Inverse entailment and Progol
-
S. H. Muggleton 1995 Inverse entailment and Progol New Generation Computing 13 245 286
-
(1995)
New Generation Computing
, vol.13
, pp. 245-286
-
-
Muggleton, S.H.1
-
62
-
-
0002205343
-
Stochastic logic programs
-
L. de Raedt (eds). IOS Press Amsterdam
-
Muggleton, S. H. (1996). Stochastic logic programs. In L. de Raedt (Ed.), Advances in inductive logic programming (pp. 254-264). Amsterdam: IOS Press.
-
(1996)
Advances in Inductive Logic Programming
, pp. 254-264
-
-
Muggleton, S.H.1
-
68
-
-
0002304628
-
Efficient induction of logic programs
-
S. H. Muggleton (eds). Academic Press London
-
Muggleton, S. H.; & Feng, C. (1992). Efficient induction of logic programs. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 281-298). London: Academic Press.
-
(1992)
Inductive Logic Programming
, pp. 281-298
-
-
Muggleton, S.H.1
Feng, C.2
-
69
-
-
0026492833
-
Protein secondary structure prediction using logic-based machine learning
-
S. H. Muggleton R. D. King M. J. E. Sternberg 1992 Protein secondary structure prediction using logic-based machine learning Protein Engineering 5 7 647 657
-
(1992)
Protein Engineering
, vol.5
, Issue.7
, pp. 647-657
-
-
Muggleton, S.H.1
King, R.D.2
Sternberg, M.J.E.3
-
72
-
-
26944451659
-
Induction of the indirect effects of actions by monotonic methods
-
Inductive Logic Programming: 15th International Conference, ILP 2005. Proceedings
-
Otero, R. (2005). Induction of the indirect effects of actions by monotonic methods. In Proceedings of the fifteenth international conference on inductive logic programming (ILP05) (Vol. 3625, pp. 279-294). Berlin: Springer. (Pubitemid 41479998)
-
(2005)
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
, vol.3625
, pp. 279-294
-
-
Otero, R.P.1
-
73
-
-
33646340423
-
Kernels on prolog proof trees: Statistical learning in the ILP setting
-
A. Passerini P. Frasconi L. De Raedt 2006 Kernels on Prolog proof trees: statistical learning in the ILP setting Journal of Machine Learning Research 7 307 342 1222.68280 (Pubitemid 43668123)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 307-342
-
-
Passerini, A.1
Fraseoni, P.2
De Raedt, L.3
-
74
-
-
0001602577
-
A note on inductive generalisation
-
B. Meltzer D. Michie (eds). Edinburgh University Press Edinburgh
-
Plotkin, G. D. (1969). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. 5, pp. 153-163). Edinburgh: Edinburgh University Press.
-
(1969)
Machine Intelligence
, vol.5
, pp. 153-163
-
-
Plotkin, G.D.1
-
76
-
-
0003203117
-
A further note on inductive generalization
-
Edinburgh University Press Edinburgh
-
Plotkin, G. D. (1971b). A further note on inductive generalization. In Machine intelligence (Vol. 6). Edinburgh: Edinburgh University Press.
-
(1971)
Machine Intelligence
, vol.6
-
-
Plotkin, G.D.1
-
78
-
-
0027702434
-
Probabilistic Horn abduction and Bayesian networks
-
0792.68176
-
D. L. Poole 1993 Probabilistic Horn abduction and Bayesian networks Artificial Intelligence 64 1 81 129 0792.68176
-
(1993)
Artificial Intelligence
, vol.64
, Issue.1
, pp. 81-129
-
-
Poole, D.L.1
-
79
-
-
0031187203
-
The independent choice logic for modelling multiple agents under uncertainty
-
0902.03017 1464312 Special issue on economic principles of multi-agent systems
-
D. L. Poole 1997 The independent choice logic for modelling multiple agents under uncertainty Artificial Intelligence 94 7 56 0902.03017 1464312 Special issue on economic principles of multi-agent systems
-
(1997)
Artificial Intelligence
, vol.94
, pp. 7-56
-
-
Poole, D.L.1
-
80
-
-
0034230835
-
Abducing through negation as failure: Stable models within the independent choice logic
-
0957.68013 1768376
-
D. L. Poole 2000 Abducing through negation as failure: stable models within the independent choice logic Journal of Logic Programming 44 1-3 5 35 0957.68013 1768376
-
(2000)
Journal of Logic Programming
, vol.44
, Issue.13
, pp. 5-35
-
-
Poole, D.L.1
-
82
-
-
40249108384
-
The independent choice logic and beyond
-
L. De Raedt P. Frasconi K. Kersting S. Muggleton (eds). Springer Berlin
-
Poole, D. L. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming: theory and application. Berlin: Springer.
-
(2008)
Probabilistic Inductive Logic Programming: Theory and Application LNCS
, vol.4911
-
-
Poole, D.L.1
-
85
-
-
0001172265
-
Learning logical definitions from relations
-
J. R. Quinlan 1990 Learning logical definitions from relations Machine Learning 5 239 266
-
(1990)
Machine Learning
, vol.5
, pp. 239-266
-
-
Quinlan, J.R.1
-
87
-
-
9444260997
-
Hybrid Abductive Inductive Learning: A Generalisation of Progol
-
Inductive Logic Programming
-
Ray, O.; Broda, K.; & Russo, A. (2003). Hybrid abductive inductive learning: a generalisation of Progol. In Lecture notes in artificial intelligence: Vol. 2835. Proceedings of the 13th international conference on inductive logic programming (ILP'03) (pp. 311-328). Berlin: Springer. (Pubitemid 37273941)
-
(2003)
Lecture Notes in Computer Science
, Issue.2835
, pp. 311-328
-
-
Ray, O.1
Broda, K.2
Russo, A.3
-
88
-
-
32044466073
-
Markov logic networks
-
DOI 10.1007/s10994-006-5833-1
-
M. Richardson P. Domingos 2006 Markov logic networks Machine Learning 62 107 136 (Pubitemid 43202307)
-
(2006)
Machine Learning
, vol.62
, Issue.SPEC. ISS. 1-2
, pp. 107-136
-
-
Richardson, M.1
Domingos, P.2
-
89
-
-
84855674274
-
A simple and general solution for inverting resolution
-
Pitman London
-
Rouveirol, C.; & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201-210). London: Pitman.
-
(1989)
EWSL-89
, pp. 201-210
-
-
Rouveirol, C.1
Puget, J.-F.2
-
91
-
-
0010220783
-
Learning concepts by asking questions
-
R. Michalski J. Carbonnel T. Mitchell (eds). Kaufmann Los Altos
-
Sammut, C.; & Banerji, R.B. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonnel, & T. Mitchell (Eds.), Machine learning: an artificial intelligence approach (Vol. 2, pp. 167-192). Los Altos: Kaufmann.
-
(1986)
Machine Learning: An Artificial Intelligence Approach
, vol.2
, pp. 167-192
-
-
Sammut, C.1
Banerji, R.B.2
-
92
-
-
79952774569
-
-
C. Sammut G. Webb (eds). Springer Berlin
-
Sammut, C.; & Webb, G. (Eds.) (2010). Encyclopedia of machine learning. Berlin: Springer.
-
(2010)
Encyclopedia of Machine Learning
-
-
-
93
-
-
84855668515
-
Symbolic dynamic programming
-
C. Sammut G. Webb (eds). Springer Berlin
-
Sanner, S.; & Kersting, K. (2010). Symbolic dynamic programming. In C. Sammut & G. Webb (Eds.), Encyclopedia of machine learning. Berlin: Springer.
-
(2010)
Encyclopedia of Machine Learning
-
-
Sanner, S.1
Kersting, K.2
-
95
-
-
40249090954
-
Generative modeling with failure in prism
-
Morgan Kaufmann San Mateo
-
Sato, T. (2005). Generative modeling with failure in prism. In International joint conference on artificial intelligence (pp. 847-852). San Mateo: Morgan Kaufmann.
-
(2005)
International Joint Conference on Artificial Intelligence
, pp. 847-852
-
-
Sato, T.1
-
97
-
-
40249098632
-
New advances in logic-based probabilistic modeling by PRISM
-
L. De Raedt P. Frasconi K. Kersting S. Muggleton (eds). Springer Berlin
-
Sato, T.; & Kameya, Y. (2008). New advances in logic-based probabilistic modeling by PRISM. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming (pp. 118-155). Berlin: Springer.
-
(2008)
Probabilistic Inductive Logic Programming LNCS
, vol.4911
, pp. 118-155
-
-
Sato, T.1
Kameya, Y.2
-
100
-
-
0005500020
-
Predicate invention in inductive logic programming
-
L. De Raedt (eds). IOS Press Amsterdam
-
Stahl, I. (1996). Predicate invention in inductive logic programming. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 34-47). Amsterdam: IOS Press.
-
(1996)
Advances in Inductive Logic Programming
, pp. 34-47
-
-
Stahl, I.1
-
102
-
-
79960163998
-
Kinetic models and qualitative abstraction for relational learning in systems biology
-
Synnaeve, G.; Inoue, K.; Doncescu, A.; Kameya, Y.; Sato, T.; Ishihata, M.; & Nabeshima, H. (2011). Kinetic models and qualitative abstraction for relational learning in systems biology. In Proceedings of the international conference on bioinformatics models, methods and algorithms.
-
(2011)
Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms
-
-
Synnaeve, G.1
Inoue, K.2
Doncescu, A.3
Kameya, Y.4
Sato, T.5
Ishihata, M.6
Nabeshima, H.7
-
103
-
-
33748281132
-
Application of abductive ILP to learning metabolic network inhibition from temporal data
-
DOI 10.1007/s10994-006-8988-x, Special ILP Mega-Issue: ILP-2003 and ILP-2004; ILP-2003 Guest Editors: Tamas Horvath and Akihiro Yamamoto; ILP-2004 Guest Editors: Rui Camacho, Ross King and Ashwin Srinivasan
-
A. Tamaddoni-Nezhad R. Chaleil A. Kakas S. H. Muggleton 2006 Application of abductive ILP to learning metabolic network inhibition from temporal data Machine Learning 64 209 230 10.1007/s10994-006-8988-x 1103.68443 (Pubitemid 44320252)
-
(2006)
Machine Learning
, vol.64
, Issue.1-3
, pp. 209-230
-
-
Tamaddoni-Nezhad, A.1
Chaleil, R.2
Kakas, A.3
Muggleton, S.4
-
104
-
-
33947622747
-
Modeling the effects of toxins in metabolic networks
-
DOI 10.1109/MEMB.2007.335590, 15
-
A. Tamaddoni-Nezhad R. Chaleil A. Kakas M. J. E. Sternberg J. Nicholson S. H. Muggleton 2007 Modeling the effects of toxins in metabolic networks IEEE Engineering in Medicine and Biology 26 37 46 10.1109/MEMB.2007.335590 (Pubitemid 46486578)
-
(2007)
IEEE Engineering in Medicine and Biology Magazine
, vol.26
, Issue.2
, pp. 37-46
-
-
Tamaddoni-Nezhad, A.1
Chaleil, R.2
Kakas, A.C.3
Sternberg, M.4
Nicholson, J.5
Muggleton, S.6
-
108
-
-
33750377189
-
Refining aggregate conditions in relational learning
-
J. Fürnkranz T. Scheffer M. Spiliopoulou (eds). Springer Berlin
-
Vens, C.; Ramon, J.; & Blockeel, H. (2006). Refining aggregate conditions in relational learning. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Lecture notes in computer science: Vol. 4213. Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (pp. 383-394). Berlin: Springer.
-
(2006)
Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases Lecture Notes in Computer Science
, vol.4213
, pp. 383-394
-
-
Vens, C.1
Ramon, J.2
Blockeel, H.3
-
110
-
-
0001125395
-
Concept formation during iterative theory revision
-
0804.68126 1334354
-
S. Wrobel 1994 Concept formation during iterative theory revision Machine Learning 14 169 191 0804.68126 1334354
-
(1994)
Machine Learning
, vol.14
, pp. 169-191
-
-
Wrobel, S.1
|