메뉴 건너뛰기




Volumn 86, Issue 1, 2012, Pages 3-23

ILP turns 20: Biography and future challenges

Author keywords

(Statistical) relational learning; Inductive Logic Programming; Structured data in Machine Learning

Indexed keywords

FUTURE CHALLENGES; INDUCTIVE LOGIC; REAL-WORLD APPLICATION; RELATIONAL LEARNING; STRUCTURED DATA;

EID: 84855664051     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5259-2     Document Type: Conference Paper
Times cited : (153)

References (111)
  • 1
    • 0343874234 scopus 로고
    • Non-monotonic learning
    • D. Michie (eds). Oxford University Press London
    • Bain, M.; & Muggleton, S. H. (1991). Non-monotonic learning. In D. Michie (Ed.), Machine intelligence (Vol. 12, pp. 105-120). London: Oxford University Press.
    • (1991) Machine Intelligence , vol.12 , pp. 105-120
    • Bain, M.1    Muggleton, S.H.2
  • 4
    • 78650121288 scopus 로고    scopus 로고
    • Discovery of abstract concepts by a robot
    • Springer Berlin
    • Bratko, I. (2010). Discovery of abstract concepts by a robot. In LNAI: Vol. 6332. Proceedings of discovery science 2010 (pp. 372-379). Berlin: Springer.
    • (2010) Proceedings of Discovery Science 2010 LNAI , vol.6332 , pp. 372-379
    • Bratko, I.1
  • 8
    • 50649120827 scopus 로고    scopus 로고
    • Learning probabilistic logic models from probabilistic examples
    • 10.1007/s10994-008-5076-4
    • J. Chen S. H. Muggleton J. Santos 2008 Learning probabilistic logic models from probabilistic examples Machine Learning 73 1 55 85 10.1007/s10994-008-5076-4
    • (2008) Machine Learning , vol.73 , Issue.1 , pp. 55-85
    • Chen, J.1    Muggleton, S.H.2    Santos, J.3
  • 11
    • 0035312953 scopus 로고    scopus 로고
    • Relational learning with statistical predicate invention: Better models for hypertext
    • DOI 10.1023/A:1007676901476
    • M. Craven S. Slattery 2001 Relational learning with statistical predicate invention: Better models for hypertext Machine Learning 43 1/2 97 119 0988.68818 (Pubitemid 32286617)
    • (2001) Machine Learning , vol.43 , Issue.1-2 , pp. 97-119
    • Craven, M.1    Slattery, S.2
  • 12
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • DOI 10.1023/A:1010924021315, Inductive Logic Programming
    • J. Cussens 2001 Parameter estimation in stochastic logic programs Machine Learning 44 3 245 271 0986.68010 (Pubitemid 32761112)
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 14
    • 0031198976 scopus 로고    scopus 로고
    • Logical settings for concept-learning
    • L. De Raedt 1997 Logical settings for concept-learning Artificial Intelligence 95 1 197 201
    • (1997) Artificial Intelligence , vol.95 , Issue.1 , pp. 197-201
    • De Raedt, L.1
  • 18
    • 0343150490 scopus 로고    scopus 로고
    • Multiple predicate learning in two inductive logic programming settings
    • 0846.68087
    • L. De Raedt N. Lavrač 1996 Multiple predicate learning in two inductive logic programming settings Journal on Pure and Applied Logic 4 2 227 254 0846.68087
    • (1996) Journal on Pure and Applied Logic , vol.4 , Issue.2 , pp. 227-254
    • De Raedt, L.1    Lavrač, N.2
  • 20
    • 52449101351 scopus 로고    scopus 로고
    • L. De Raedt P. Frasconi K. Kersting S. H. Muggleton (eds). Springer Berlin 1132.68007
    • De Raedt, L.; Frasconi, P.; Kersting, K.; & Muggleton, S. H. (Eds.) (2008). LNAI: Vol. 4911. Probabilistic inductive logic programming. Berlin: Springer.
    • (2008) Probabilistic Inductive Logic Programming LNAI , vol.4911
  • 21
    • 33947709517 scopus 로고    scopus 로고
    • Discovery of relational association rules
    • S. Džeroski N. Lavrač (eds). Springer Berlin
    • Dehaspe, L.; & Toivonen, H. (2001). Discovery of relational association rules. In Džeroski, S.; & Lavrač, N. (Eds.), Relational data mining (pp. 189-212). Berlin: Springer.
    • (2001) Relational Data Mining , pp. 189-212
    • Dehaspe, L.1    Toivonen, H.2
  • 23
    • 0003323974 scopus 로고
    • The application of Inductive Logic Programming to finite element mesh design
    • S. H. Muggleton (eds). Academic Press London
    • Dolsak, B.; & Muggleton, S. H. (1992). The application of Inductive Logic Programming to finite element mesh design. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 453-472). London: Academic Press.
    • (1992) Inductive Logic Programming , pp. 453-472
    • Dolsak, B.1    Muggleton, S.H.2
  • 24
    • 33750705609 scopus 로고    scopus 로고
    • Unifying logical and statistical AI
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • Domingos, P. S.; Kok, S.; Poon, H.; Richardson, M.; & Singla, P. (2006). Unifying logical and statistical ai. In Proceedings of the twenty-first national conference on artificial intelligence, AAAI06 (pp. 2-7). Menlo Park/Cambridge: AAAI Press/MIT Press. (Pubitemid 44705255)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 2-7
    • Domingos, P.1    Kok, S.2    Poon, H.3    Richardson, M.4    Singla, P.5
  • 25
    • 0011177327 scopus 로고    scopus 로고
    • S. Džeroski N. Lavrač (eds). Springer Berlin 1003.68039
    • Džeroski, S.; & Lavrač, N. (Eds.) (2001). Relational data mining. Berlin: Springer.
    • (2001) Relational Data Mining
  • 30
    • 0344889711 scopus 로고
    • Inducing temporal fault diagnostic rules from a qualitative model
    • S. H. Muggleton (eds). Academic Press London
    • Feng, C. (1992). Inducing temporal fault diagnostic rules from a qualitative model. In S. H. Muggleton (Ed.), Inductive logic programming. London: Academic Press.
    • (1992) Inductive Logic Programming
    • Feng, C.1
  • 31
    • 85028883412 scopus 로고
    • Predicate invention in inductive data engineering
    • P. B. Brazdil (eds). Springer Berlin
    • Flach, P. (1993). Predicate invention in inductive data engineering. In P. B. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Machine learning: ECML-93 (pp. 83-94). Berlin: Springer.
    • (1993) Machine Learning: ECML-93 Lecture Notes in Artificial Intelligence , vol.667 , pp. 83-94
    • Flach, P.1
  • 34
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • S. Džeroski N. Lavrač (eds). Springer Berlin
    • Getoor, L.; Friedman, N.; Koller, D.; & Pfeffer, A. (2001). Learning probabilistic relational models. In Džeroski, S.; & Lavrač, N. (Eds.), Relational data mining (pp. 307-335). Berlin: Springer.
    • (2001) Relational Data Mining , pp. 307-335
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 37
    • 3543077604 scopus 로고    scopus 로고
    • Induction as consequence finding
    • 1101.68078
    • K. Inoue 2004 Induction as consequence finding Machine Learning 55 109 135 1101.68078
    • (2004) Machine Learning , vol.55 , pp. 109-135
    • Inoue, K.1
  • 39
    • 84949187512 scopus 로고    scopus 로고
    • Towards Combining Inductive Logic Programming with Bayesian Networks
    • Kersting, K.; & De Raedt, L. (2001). Towards combining inductive logic programming with bayesian networks. In LNAI: Vol. 2157. Proceedings of the eleventh international conference on inductive logic programming (pp. 118-131). Berlin: Springer. (Pubitemid 33332602)
    • (2001) Lecture Notes in Computer Science , Issue.2157 , pp. 118-131
    • Kersting, K.1    De Raedt, L.2
  • 43
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
    • DOI 10.1073/pnas.93.1.438
    • R. D. King S. H. Muggleton A. Srinivasan M. J. E. Sternberg 1996 Structure-activity relationships derived by machine learning: the use of atoms and their bond connectives to predict mutagenicity by inductive logic programming Proceedings of the National Academy of Sciences 93 438 442 (Pubitemid 26038172)
    • (1996) Proceedings of the National Academy of Sciences of the United States of America , vol.93 , Issue.1 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.J.E.4
  • 47
    • 1942515438 scopus 로고    scopus 로고
    • Propositionalization approaches to relational data mining
    • S. Džeroski N. Lavrač (eds). Springer Berlin
    • Kramer, S.; Lavrač, N.; & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262-291). Berlin: Springer.
    • (2001) Relational Data Mining , pp. 262-291
    • Kramer, S.1    Lavrač, N.2    Flach, P.3
  • 48
    • 84937420049 scopus 로고    scopus 로고
    • Transformation-Based Learning Using Multirelational Aggregation
    • Krogel, M.-A.; & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation. In LNCS: Vol. 2157. Inductive logic programming (pp. 142-155). (Pubitemid 33332604)
    • (2001) Lecture Notes in Computer Science , Issue.2157 , pp. 142-155
    • Krogel, M.-A.1    Wrobel, S.2
  • 52
    • 7444259548 scopus 로고    scopus 로고
    • Bridging the gap between horn clausal logic and description logics in inductive learning
    • Springer Berlin
    • Lisi, F. A.; & Malerba, D. (2003). Bridging the gap between horn clausal logic and description logics in inductive learning. In LNCS: Vol. 2829. AI IA 2003: Advances in artificial intelligence. Berlin: Springer.
    • (2003) AI IA 2003: Advances in Artificial Intelligence LNCS , vol.2829
    • Lisi, F.A.1    Malerba, D.2
  • 57
    • 84957882641 scopus 로고    scopus 로고
    • Learning Programs in the Event Calculus
    • Inductive Logic Programming
    • Moyle, S.; & Muggleton, S. H. (1997). Learning programs in the event calculus. In N. Lavrač & S. Džeroski (Eds.), LNAI: Vol. 1297. Proceedings of the seventh inductive logic programming workshop (ILP97) (pp. 205-212). Berlin: Springer. (Pubitemid 127124392)
    • (1997) Lecture Notes in Computer Science , Issue.1297 , pp. 205-212
    • Moyle, S.1    Muggleton, S.2
  • 58
    • 85167864773 scopus 로고
    • Duce, an oracle based approach to constructive induction
    • Kaufmann Los Altos
    • Muggleton, S. H. (1987). Duce, an oracle based approach to constructive induction. In IJCAI-87 (pp. 287-292). Los Altos: Kaufmann.
    • (1987) IJCAI-87 , pp. 287-292
    • Muggleton, S.H.1
  • 59
    • 0000640432 scopus 로고
    • Inductive logic programming
    • 0712.68022
    • S. H. Muggleton 1991 Inductive logic programming New Generation Computing 8 4 295 318 0712.68022
    • (1991) New Generation Computing , vol.8 , Issue.4 , pp. 295-318
    • Muggleton, S.H.1
  • 60
    • 0004109056 scopus 로고
    • S. H. Muggleton (eds). Academic Press San Diego 0838.68093
    • Muggleton, S. H. (Ed.) (1992). Inductive logic programming. San Diego: Academic Press.
    • (1992) Inductive Logic Programming
  • 61
  • 62
    • 0002205343 scopus 로고    scopus 로고
    • Stochastic logic programs
    • L. de Raedt (eds). IOS Press Amsterdam
    • Muggleton, S. H. (1996). Stochastic logic programs. In L. de Raedt (Ed.), Advances in inductive logic programming (pp. 254-264). Amsterdam: IOS Press.
    • (1996) Advances in Inductive Logic Programming , pp. 254-264
    • Muggleton, S.H.1
  • 68
    • 0002304628 scopus 로고
    • Efficient induction of logic programs
    • S. H. Muggleton (eds). Academic Press London
    • Muggleton, S. H.; & Feng, C. (1992). Efficient induction of logic programs. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 281-298). London: Academic Press.
    • (1992) Inductive Logic Programming , pp. 281-298
    • Muggleton, S.H.1    Feng, C.2
  • 69
    • 0026492833 scopus 로고
    • Protein secondary structure prediction using logic-based machine learning
    • S. H. Muggleton R. D. King M. J. E. Sternberg 1992 Protein secondary structure prediction using logic-based machine learning Protein Engineering 5 7 647 657
    • (1992) Protein Engineering , vol.5 , Issue.7 , pp. 647-657
    • Muggleton, S.H.1    King, R.D.2    Sternberg, M.J.E.3
  • 72
    • 26944451659 scopus 로고    scopus 로고
    • Induction of the indirect effects of actions by monotonic methods
    • Inductive Logic Programming: 15th International Conference, ILP 2005. Proceedings
    • Otero, R. (2005). Induction of the indirect effects of actions by monotonic methods. In Proceedings of the fifteenth international conference on inductive logic programming (ILP05) (Vol. 3625, pp. 279-294). Berlin: Springer. (Pubitemid 41479998)
    • (2005) Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) , vol.3625 , pp. 279-294
    • Otero, R.P.1
  • 73
    • 33646340423 scopus 로고    scopus 로고
    • Kernels on prolog proof trees: Statistical learning in the ILP setting
    • A. Passerini P. Frasconi L. De Raedt 2006 Kernels on Prolog proof trees: statistical learning in the ILP setting Journal of Machine Learning Research 7 307 342 1222.68280 (Pubitemid 43668123)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 307-342
    • Passerini, A.1    Fraseoni, P.2    De Raedt, L.3
  • 74
    • 0001602577 scopus 로고
    • A note on inductive generalisation
    • B. Meltzer D. Michie (eds). Edinburgh University Press Edinburgh
    • Plotkin, G. D. (1969). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. 5, pp. 153-163). Edinburgh: Edinburgh University Press.
    • (1969) Machine Intelligence , vol.5 , pp. 153-163
    • Plotkin, G.D.1
  • 76
    • 0003203117 scopus 로고
    • A further note on inductive generalization
    • Edinburgh University Press Edinburgh
    • Plotkin, G. D. (1971b). A further note on inductive generalization. In Machine intelligence (Vol. 6). Edinburgh: Edinburgh University Press.
    • (1971) Machine Intelligence , vol.6
    • Plotkin, G.D.1
  • 78
    • 0027702434 scopus 로고
    • Probabilistic Horn abduction and Bayesian networks
    • 0792.68176
    • D. L. Poole 1993 Probabilistic Horn abduction and Bayesian networks Artificial Intelligence 64 1 81 129 0792.68176
    • (1993) Artificial Intelligence , vol.64 , Issue.1 , pp. 81-129
    • Poole, D.L.1
  • 79
    • 0031187203 scopus 로고    scopus 로고
    • The independent choice logic for modelling multiple agents under uncertainty
    • 0902.03017 1464312 Special issue on economic principles of multi-agent systems
    • D. L. Poole 1997 The independent choice logic for modelling multiple agents under uncertainty Artificial Intelligence 94 7 56 0902.03017 1464312 Special issue on economic principles of multi-agent systems
    • (1997) Artificial Intelligence , vol.94 , pp. 7-56
    • Poole, D.L.1
  • 80
    • 0034230835 scopus 로고    scopus 로고
    • Abducing through negation as failure: Stable models within the independent choice logic
    • 0957.68013 1768376
    • D. L. Poole 2000 Abducing through negation as failure: stable models within the independent choice logic Journal of Logic Programming 44 1-3 5 35 0957.68013 1768376
    • (2000) Journal of Logic Programming , vol.44 , Issue.13 , pp. 5-35
    • Poole, D.L.1
  • 82
    • 40249108384 scopus 로고    scopus 로고
    • The independent choice logic and beyond
    • L. De Raedt P. Frasconi K. Kersting S. Muggleton (eds). Springer Berlin
    • Poole, D. L. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming: theory and application. Berlin: Springer.
    • (2008) Probabilistic Inductive Logic Programming: Theory and Application LNCS , vol.4911
    • Poole, D.L.1
  • 85
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • J. R. Quinlan 1990 Learning logical definitions from relations Machine Learning 5 239 266
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 87
    • 9444260997 scopus 로고    scopus 로고
    • Hybrid Abductive Inductive Learning: A Generalisation of Progol
    • Inductive Logic Programming
    • Ray, O.; Broda, K.; & Russo, A. (2003). Hybrid abductive inductive learning: a generalisation of Progol. In Lecture notes in artificial intelligence: Vol. 2835. Proceedings of the 13th international conference on inductive logic programming (ILP'03) (pp. 311-328). Berlin: Springer. (Pubitemid 37273941)
    • (2003) Lecture Notes in Computer Science , Issue.2835 , pp. 311-328
    • Ray, O.1    Broda, K.2    Russo, A.3
  • 88
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • DOI 10.1007/s10994-006-5833-1
    • M. Richardson P. Domingos 2006 Markov logic networks Machine Learning 62 107 136 (Pubitemid 43202307)
    • (2006) Machine Learning , vol.62 , Issue.SPEC. ISS. 1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 89
    • 84855674274 scopus 로고
    • A simple and general solution for inverting resolution
    • Pitman London
    • Rouveirol, C.; & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp. 201-210). London: Pitman.
    • (1989) EWSL-89 , pp. 201-210
    • Rouveirol, C.1    Puget, J.-F.2
  • 91
    • 0010220783 scopus 로고
    • Learning concepts by asking questions
    • R. Michalski J. Carbonnel T. Mitchell (eds). Kaufmann Los Altos
    • Sammut, C.; & Banerji, R.B. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonnel, & T. Mitchell (Eds.), Machine learning: an artificial intelligence approach (Vol. 2, pp. 167-192). Los Altos: Kaufmann.
    • (1986) Machine Learning: An Artificial Intelligence Approach , vol.2 , pp. 167-192
    • Sammut, C.1    Banerji, R.B.2
  • 92
    • 79952774569 scopus 로고    scopus 로고
    • C. Sammut G. Webb (eds). Springer Berlin
    • Sammut, C.; & Webb, G. (Eds.) (2010). Encyclopedia of machine learning. Berlin: Springer.
    • (2010) Encyclopedia of Machine Learning
  • 93
    • 84855668515 scopus 로고    scopus 로고
    • Symbolic dynamic programming
    • C. Sammut G. Webb (eds). Springer Berlin
    • Sanner, S.; & Kersting, K. (2010). Symbolic dynamic programming. In C. Sammut & G. Webb (Eds.), Encyclopedia of machine learning. Berlin: Springer.
    • (2010) Encyclopedia of Machine Learning
    • Sanner, S.1    Kersting, K.2
  • 95
    • 40249090954 scopus 로고    scopus 로고
    • Generative modeling with failure in prism
    • Morgan Kaufmann San Mateo
    • Sato, T. (2005). Generative modeling with failure in prism. In International joint conference on artificial intelligence (pp. 847-852). San Mateo: Morgan Kaufmann.
    • (2005) International Joint Conference on Artificial Intelligence , pp. 847-852
    • Sato, T.1
  • 97
    • 40249098632 scopus 로고    scopus 로고
    • New advances in logic-based probabilistic modeling by PRISM
    • L. De Raedt P. Frasconi K. Kersting S. Muggleton (eds). Springer Berlin
    • Sato, T.; & Kameya, Y. (2008). New advances in logic-based probabilistic modeling by PRISM. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming (pp. 118-155). Berlin: Springer.
    • (2008) Probabilistic Inductive Logic Programming LNCS , vol.4911 , pp. 118-155
    • Sato, T.1    Kameya, Y.2
  • 100
    • 0005500020 scopus 로고    scopus 로고
    • Predicate invention in inductive logic programming
    • L. De Raedt (eds). IOS Press Amsterdam
    • Stahl, I. (1996). Predicate invention in inductive logic programming. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 34-47). Amsterdam: IOS Press.
    • (1996) Advances in Inductive Logic Programming , pp. 34-47
    • Stahl, I.1
  • 103
    • 33748281132 scopus 로고    scopus 로고
    • Application of abductive ILP to learning metabolic network inhibition from temporal data
    • DOI 10.1007/s10994-006-8988-x, Special ILP Mega-Issue: ILP-2003 and ILP-2004; ILP-2003 Guest Editors: Tamas Horvath and Akihiro Yamamoto; ILP-2004 Guest Editors: Rui Camacho, Ross King and Ashwin Srinivasan
    • A. Tamaddoni-Nezhad R. Chaleil A. Kakas S. H. Muggleton 2006 Application of abductive ILP to learning metabolic network inhibition from temporal data Machine Learning 64 209 230 10.1007/s10994-006-8988-x 1103.68443 (Pubitemid 44320252)
    • (2006) Machine Learning , vol.64 , Issue.1-3 , pp. 209-230
    • Tamaddoni-Nezhad, A.1    Chaleil, R.2    Kakas, A.3    Muggleton, S.4
  • 110
    • 0001125395 scopus 로고
    • Concept formation during iterative theory revision
    • 0804.68126 1334354
    • S. Wrobel 1994 Concept formation during iterative theory revision Machine Learning 14 169 191 0804.68126 1334354
    • (1994) Machine Learning , vol.14 , pp. 169-191
    • Wrobel, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.