메뉴 건너뛰기




Volumn 9, Issue 4, 2014, Pages

Multiagent reinforcement social learning toward coordination in cooperative multiagent systems

Author keywords

Cooperative games; Multiagent coordination; Multiagent social learning

Indexed keywords

GAME THEORY; LEARNING ALGORITHMS; PARETO PRINCIPLE; STOCHASTIC SYSTEMS;

EID: 84938057635     PISSN: 15564665     EISSN: 15564703     Source Type: Journal    
DOI: 10.1145/2644819     Document Type: Article
Times cited : (24)

References (26)
  • 1
    • 84891758993 scopus 로고    scopus 로고
    • Game artificial intelligence based using reinforcement learning
    • 2012
    • Albertus Agung and Ford Lumban Gaol. 2012. Game artificial intelligence based using reinforcement learning. Procedia Engineering 50(2012), 555-565.
    • (2012) Procedia Engineering , vol.50 , pp. 555-565
    • Agung, A.1    Gaol, F.L.2
  • 4
    • 0031630561 scopus 로고    scopus 로고
    • The dynamics of reinforcement learning in cooperative multiagent systems
    • C. Claus and C. Boutilier. 1998. The dynamics of reinforcement learning in cooperative multiagent systems. In Proceedings of AAAI'98. 746-752.
    • (1998) Proceedings of AAAI'98 , pp. 746-752
    • Claus, C.1    Boutilier, C.2
  • 7
    • 84880861539 scopus 로고    scopus 로고
    • Predicting and preventing coordination problems in cooperative learning systems
    • N. Fulda and D. Ventura. 2007. Predicting and preventing coordination problems in cooperative learning systems. In Proceedings of IJCAI'07. 780-785.
    • (2007) Proceedings of IJCAI'07 , pp. 780-785
    • Fulda, N.1    Ventura, D.2
  • 10
    • 0036932299 scopus 로고    scopus 로고
    • Reinforcement learning of coordination in cooperative multiagent systems
    • S. Kapetanakis and D. Kudenko. 2002. Reinforcement learning of coordination in cooperative multiagent systems. In Proceedings of AAAI'02. 326-331.
    • (2002) Proceedings of AAAI'02 , pp. 326-331
    • Kapetanakis, S.1    Kudenko, D.2
  • 11
    • 84875277299 scopus 로고    scopus 로고
    • Reinforcement learning in population games
    • 2013
    • Ratul Lahkar and Robert M. Seymour. 2013. Reinforcement learning in population games. Games and Economic Behavior 80(2013), 10-38.
    • (2013) Games and Economic Behavior , vol.80 , pp. 10-38
    • Lahkar, R.1    Seymour, R.M.2
  • 12
    • 0012286079 scopus 로고    scopus 로고
    • An algorithm for distributed reinforcement learning in cooperative multiagent systems
    • M. Lauer and M. Riedmiller. 2000. An algorithm for distributed reinforcement learning in cooperative multiagent systems. In Proceedings of ICML'00. 535-542.
    • (2000) Proceedings of ICML'00 , pp. 535-542
    • Lauer, M.1    Riedmiller, M.2
  • 15
    • 84857861863 scopus 로고    scopus 로고
    • Independent reinforcement learners in cooperative Markov games: A survey regarding coordination problems
    • 2012
    • L. Matignon, G. J. Laurent, and N. Le For-Piat. 2012. Independent reinforcement learners in cooperative Markov games: A survey regarding coordination problems. Knowledge Engineering Review 27(2012), 1-31.
    • (2012) Knowledge Engineering Review , vol.27 , pp. 1-31
    • Matignon, L.1    Laurent, G.J.2    Le For-Piat, N.3
  • 16
    • 51349117828 scopus 로고    scopus 로고
    • Hysteretic q-learning: An algorithm for dynamic reinforcement learning in cooperative multiagent teams
    • L. Matignon, G. J. Laurent, and N. Le Fort-Piat. 2007. Hysteretic q-learning: An algorithm for dynamic reinforcement learning in cooperative multiagent teams. In Proceedings of IROS'07. 64-69.
    • (2007) Proceedings of IROS'07 , pp. 64-69
    • Matignon, L.1    Laurent, G.J.2    Le Fort-Piat, N.3
  • 17
    • 0035509489 scopus 로고    scopus 로고
    • A survey on position-based routing in mobile ad hoc networks
    • 2001
    • M. Mauve, J. Widmer, and H. Hartenstein. 2001. A survey on position-based routing in mobile ad hoc networks. Network, IEEE 15, 6(2001), 30-39.
    • (2001) Network, IEEE , vol.15 , Issue.6 , pp. 30-39
    • Mauve, M.1    Widmer, J.2    Hartenstein, H.3
  • 18
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multi-agent learning: The state of the art
    • 2005
    • L. Panait and S. Luke. 2005. Cooperative multi-agent learning: The state of the art. JAAMAS 11(3) (2005), 387-434.
    • (2005) JAAMAS , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 19
    • 34247189655 scopus 로고    scopus 로고
    • Lenient learners in cooperative multiagent systems
    • L. Panait, K. Sullivan, and S. Luke. 2006. Lenient learners in cooperative multiagent systems. In Proceedings of AAMAS'06. 801-803.
    • (2006) Proceedings of AAMAS'06 , pp. 801-803
    • Panait, L.1    Sullivan, K.2    Luke, S.3
  • 21
    • 84880856184 scopus 로고    scopus 로고
    • Emergence of norms through social learning
    • S. Sen and S. Airiau. 2007. Emergence of norms through social learning. In Proceedings of IJCAI'07. 1507-1512.
    • (2007) Proceedings of IJCAI'07 , pp. 1507-1512
    • Sen, S.1    Airiau, S.2
  • 22
    • 77955661714 scopus 로고    scopus 로고
    • Social learning promotes institutions for governing the commons
    • 2010
    • K. Sigmund, H. D. Silva, A. Traulsen, and C. Hauert. 2010. Social learning promotes institutions for governing the commons. Nature 466(2010), 7308.
    • (2010) Nature , vol.466 , pp. 7308
    • Sigmund, K.1    Silva, H.D.2    Traulsen, A.3    Hauert, C.4
  • 25
    • 67649405225 scopus 로고    scopus 로고
    • Reinforcement learning to play an optimal Nash equilibrium in team Markov games
    • X. Wang and T. Sandholm. 2002. Reinforcement learning to play an optimal Nash equilibrium in team Markov games. In Proceedings of NIPS'02. 1571-1578.
    • (2002) Proceedings of NIPS'02 , pp. 1571-1578
    • Wang, X.1    Sandholm, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.