-
3
-
-
0242445747
-
Committee-based sample selection for probabilistic classifiers
-
S. Argamon-Engelson and I. Dagan. Committee-based sample selection for probabilistic classifiers. J. Artif. Intell. Res. (JAIR), 11:335-360, 1999.
-
(1999)
J. Artif. Intell. Res. (JAIR)
, vol.11
, pp. 335-360
-
-
Argamon-Engelson, S.1
Dagan, I.2
-
5
-
-
33746054079
-
Adaptive product normalization: Using online learning for record linkage in comparison shopping
-
M. Bilenko, S. Basu, and M. Sahami. Adaptive product normalization: Using online learning for record linkage in comparison shopping. In Proc. of the 5th IEEE Intl. Conf. on Data Mining, pages 58-65, 2005.
-
(2005)
Proc. of the 5th IEEE Intl. Conf. on Data Mining
, pp. 58-65
-
-
Bilenko, M.1
Basu, S.2
Sahami, M.3
-
9
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, June 1998. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
11
-
-
85011029434
-
Example-driven design of efficient record matching queries
-
S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik. Example-driven design of efficient record matching queries. In Proc. of the 33rd Intl. Conf. on Very Large Data Bases, pages 327-338, 2007.
-
(2007)
Proc. of the 33rd Intl. Conf. on Very Large Data Bases
, pp. 327-338
-
-
Chaudhuri, S.1
Chen, B.-C.2
Ganti, V.3
Kaushik, R.4
-
13
-
-
77954706364
-
-
Citeseer. http://citeseerx.ist.psu.edu/.
-
-
-
-
14
-
-
0000666461
-
Data integration using similarity joins and a word-based information representation language
-
July
-
W. W. Cohen. Data integration using similarity joins and a word-based information representation language. ACM Trans. on Information Systems, 18(3):288-321, July 2000.
-
(2000)
ACM Trans. on Information Systems
, vol.18
, Issue.3
, pp. 288-321
-
-
Cohen, W.W.1
-
15
-
-
0028424239
-
Improving generalization with active learning
-
D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.A.1
Atlas, L.E.2
Ladner, R.E.3
-
16
-
-
0034538249
-
An optimal algorithm for monte carlo estimation
-
P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An optimal algorithm for monte carlo estimation. SIAM Journal of Computing, 29(5):1484-1496, 2000. (Pubitemid 33768936)
-
(2000)
SIAM Journal on Computing
, vol.29
, Issue.5
, pp. 1484-1496
-
-
Dagum, P.1
Karp, R.2
Luby, M.3
Ross, S.4
-
17
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
-
S. Dasgupta. Coarse sample complexity bounds for active learning. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 235-242. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
, pp. 235-242
-
-
Dasgupta, S.1
-
20
-
-
33845667955
-
Duplicate record detection: A survey
-
Jan.
-
A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey. IEEE Trans. on Knowledge and Data Engg., 19(1):1-16, Jan. 2007.
-
(2007)
IEEE Trans. on Knowledge and Data Engg.
, vol.19
, Issue.1
, pp. 1-16
-
-
Elmagarmid, A.K.1
Ipeirotis, P.G.2
Verykios, V.S.3
-
21
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, et al. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
-
23
-
-
84944318804
-
Approximate string joins in a database (almost) for free
-
Sept.
-
L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, et al. Approximate string joins in a database (almost) for free. In Proc. of the 27th Intl. Conf. on Very Large Data Bases, pages 491-500, Sept. 2001.
-
(2001)
Proc. of the 27th Intl. Conf. on Very Large Data Bases
, pp. 491-500
-
-
Gravano, L.1
Ipeirotis, P.G.2
Jagadish, H.V.3
Koudas, N.4
-
24
-
-
0348220549
-
Discovering all most specific sentences
-
June
-
D. Gunopulos, R. Khardon, H. Mannila, et al. Discovering all most specific sentences. ACM Trans. on Database Systems, 28(2):140-174, June 2003.
-
(2003)
ACM Trans. on Database Systems
, vol.28
, Issue.2
, pp. 140-174
-
-
Gunopulos, D.1
Khardon, R.2
Mannila, H.3
-
26
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, et al. The WEKA data mining software: An update. SIGKDD Explorations, 11(1), 2009.
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
-
31
-
-
85011032600
-
Vgram: Improving performance of approximate queries on string collections using variable-length grams
-
Sept.
-
C. Li, B. Wang, and X. Yang. Vgram: Improving performance of approximate queries on string collections using variable-length grams. In Proc. of the 33rd Intl. Conf. on Very Large Data Bases, pages 303-314, Sept. 2007.
-
(2007)
Proc. of the 33rd Intl. Conf. on Very Large Data Bases
, pp. 303-314
-
-
Li, C.1
Wang, B.2
Yang, X.3
-
40
-
-
0035545848
-
Learning object identification rules for information integration
-
DOI 10.1016/S0306-4379(01)00042-4, Data Extraction, Cleaning and Reconciliation
-
S. Tejada, C. A. Knoblock, and S. Minton. Learning object identification rules for information integration. Information Systems, 26(8):607-633, Dec. 2001. (Pubitemid 33046273)
-
(2001)
Information Systems
, vol.26
, Issue.8
, pp. 607-633
-
-
Tejada, S.1
Knoblock, C.A.2
Minton, S.3
-
41
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
42
-
-
0012866045
-
-
Technical report, Statistical Research Division, U.S. Bureau of the Census, Washington DC
-
W. Winkler. The state of record linkage and current research problems. Technical report, Statistical Research Division, U.S. Bureau of the Census, Washington DC, 1999.
-
(1999)
The State of Record Linkage and Current Research Problems
-
-
Winkler, W.1
|