메뉴 건너뛰기




Volumn 37, Issue 8, 2015, Pages 1529-1540

A semidefinite programming based search strategy for feature selection with mutual information measure

Author keywords

Approximation ratio; Convex objective; Feature selection; Mutual information

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; CLUSTERING ALGORITHMS; COMPUTATIONAL COMPLEXITY; DATA MINING; GRAPH THEORY; OPTIMIZATION; POLYNOMIAL APPROXIMATION; SET THEORY;

EID: 84937811946     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2014.2372791     Document Type: Article
Times cited : (55)

References (43)
  • 3
    • 0042657622 scopus 로고    scopus 로고
    • Greedily finding a dense subgraph
    • Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, "Greedily finding a dense subgraph", J. Algorithms, vol. 34, no. 2, pp. 203-221, 2000.
    • (2000) J. Algorithms , vol.34 , Issue.2 , pp. 203-221
    • Asahiro, Y.1    Iwama, K.2    Tamaki, H.3    Tokuyama, T.4
  • 4
    • 77952590681 scopus 로고    scopus 로고
    • On the feature selection criterion based on an approximation of multidimensional mutual information
    • Jul.
    • K. S. Balagani and V. V. Phoha, "On the feature selection criterion based on an approximation of multidimensional mutual information", IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1342-1343, Jul. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.7 , pp. 1342-1343
    • Balagani, K.S.1    Phoha, V.V.2
  • 5
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Jul.
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning", IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550, Jul. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 8
    • 83455217064 scopus 로고    scopus 로고
    • A new perspective for information theoretic feature selection
    • G. Brown, "A new perspective for information theoretic feature selection", in Proc. 12th Int. Conf. Artif. Intell. Statist., 2009, pp. 49-56.
    • (2009) Proc. 12th Int. Conf. Artif. Intell. Statist. , pp. 49-56
    • Brown, G.1
  • 9
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M. Zhao, and M. Lujan, "Conditional likelihood maximisation: A unifying framework for information theoretic feature selection", J. Mach. Learn., vol. 13, no. 1, pp. 27-66, 2012.
    • (2012) J. Mach. Learn. , vol.13 , Issue.1 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.3    Lujan, M.4
  • 15
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Sep.
    • J. H. Friedman and J. W. Tukey, "A projection pursuit algorithm for exploratory data analysis", IEEE Trans. Comput., vol. C-23, no. 9, pp. 881-890, Sep. 1974.
    • (1974) IEEE Trans. Comput. , vol.C-23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 16
    • 0019346338 scopus 로고
    • On the quadratic assignment problem
    • A. M. Frieze and J. Yadegar, "On the quadratic assignment problem", Discrete Appl. Math., vol. 5, no. 1, pp. 89-98, 1983.
    • (1983) Discrete Appl. Math. , vol.5 , Issue.1 , pp. 89-98
    • Frieze, A.M.1    Yadegar, J.2
  • 17
    • 84947796753 scopus 로고    scopus 로고
    • On the potential inadequacy of mutual information for feature selection
    • B. Frenay, G. Doquire, and M. Verleysen, "On the potential inadequacy of mutual information for feature selection", in Proc. Eur. Symp. Artif. Neural Netw., 2012, pp. 120-126.
    • (2012) Proc. Eur. Symp. Artif. Neural Netw. , pp. 120-126
    • Frenay, B.1    Doquire, G.2    Verleysen, M.3
  • 18
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • M. X. Goemans and D. P. Williamson, "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming", J. ACM, vol. 42, no. 6, pp. 1115-1145, 1995.
    • (1995) J. ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 19
    • 84870368819 scopus 로고    scopus 로고
    • SpeeDP: An algorithm to compute SDP bounds for very large max-cut instances
    • L. Grippo, L. Palagi, M. Piacentini, V. Piccialli, and G. Rinaldi, "SpeeDP: An algorithm to compute SDP bounds for very large max-cut instances", Math. Programm., vol. 136, pp. 353-373, 2012.
    • (2012) Math. Programm. , vol.136 , pp. 353-373
    • Grippo, L.1    Palagi, L.2    Piacentini, M.3    Piccialli, V.4    Rinaldi, G.5
  • 21
    • 0019042755 scopus 로고
    • Multiple mutual informations and multiple interactions in frequency data
    • T. S. Han, "Multiple mutual informations and multiple interactions in frequency data", Inf. Control, vol. 46, no. 1, pp. 26-45, 1980.
    • (1980) Inf. Control , vol.46 , Issue.1 , pp. 26-45
    • Han, T.S.1
  • 22
    • 84915005479 scopus 로고
    • Probability of error, equivocation and the Chernoff bound
    • Jul.
    • M. Hellman and J. Raviv, "Probability of error, equivocation and the Chernoff bound", IEEE Trans. Inf. Theory, vol. 16, no. 4, pp. 368-372, Jul. 1970.
    • (1970) IEEE Trans. Inf. Theory , vol.16 , Issue.4 , pp. 368-372
    • Hellman, M.1    Raviv, J.2
  • 24
    • 84893685385 scopus 로고    scopus 로고
    • What are the differences between Bayesian classifiers and mutual-information classifiers?
    • Feb.
    • B. G. Hu, "What are the differences between Bayesian classifiers and mutual-information classifiers?" IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 249-264, Feb. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.2 , pp. 249-264
    • Hu, B.G.1
  • 26
    • 34547227692 scopus 로고    scopus 로고
    • Extraction of configurational entropy from molecular simulations via an expansion approximation
    • B. J. Killian, J. Y. Kravitz, and M. K. Gilson, "Extraction of configurational entropy from molecular simulations via an expansion approximation", J. Chem. Phys., vol. 127, no. 2, p. 024107, 2007.
    • (2007) J. Chem. Phys. , vol.127 , Issue.2 , pp. 024107
    • Killian, B.J.1    Kravitz, J.Y.2    Gilson, M.K.3
  • 28
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Jan.
    • N. Kwak and C. Choi, "Input feature selection for classification problems", IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 143-159, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.2
  • 29
    • 20344396845 scopus 로고    scopus 로고
    • Yalmip: A toolbox for modeling and optimization in matlab
    • J. Lofberg, "Yalmip: A toolbox for modeling and optimization in matlab", in Proc. Comput. Aided Control Syst. Des., 2004, pp. 284-289.
    • (2004) Proc. Comput. Aided Control Syst. Des. , pp. 284-289
    • Lofberg, J.1
  • 30
    • 84937351341 scopus 로고
    • Multivariate information transmission
    • W. McGill, "Multivariate information transmission", IRE Professional Group Inf. Theory, vol. 4, no. 4, pp. 93-111, 1954.
    • (1954) IRE Professional Group Inf. Theory , vol.4 , Issue.4 , pp. 93-111
    • McGill, W.1
  • 33
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Sep.
    • P. M. Narendra and K. Fukunaga, "A branch and bound algorithm for feature subset selection", IEEE Trans. Comput., vol. C-26, no. 9, pp. 917-922, Sep. 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 34
    • 35048871635 scopus 로고    scopus 로고
    • SVM-based feature selection by direct objective minimisation
    • J. Neumann, C. Schnörr, and G. Steidl, "SVM-based feature selection by direct objective minimisation", in Proc. 26th DAGM Symp., 2004, pp. 212-219.
    • (2004) Proc. 26th DAGM Symp. , pp. 212-219
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 35
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy", IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 36
    • 0002821681 scopus 로고
    • A recipe for semidefinite relaxation for (0, 1)-quadratic programming
    • S. Poljak, F. Rendl, and H. Wolkowicz, "A recipe for semidefinite relaxation for (0, 1)-quadratic programming", J. Global Optim., vol. 7, no. 1, pp. 51-73, 1995.
    • (1995) J. Global Optim. , vol.7 , Issue.1 , pp. 51-73
    • Poljak, S.1    Rendl, F.2    Wolkowicz, H.3
  • 37
    • 0000435276 scopus 로고
    • Probabilistic construction of deterministic algorithms: Approximating packing integer programs
    • P. Raghavan, "Probabilistic construction of deterministic algorithms: Approximating packing integer programs", J. Comput. Syst. Sci., vol. 37, no. 2, pp. 130-143, 1988.
    • (1988) J. Comput. Syst. Sci. , vol.37 , Issue.2 , pp. 130-143
    • Raghavan, P.1
  • 42
    • 0026155039 scopus 로고
    • A new outlook on Shannon's information measures
    • May
    • R. W. Yeung, "A new outlook on Shannon's information measures", IEEE Trans. Inf. Theory, vol. 37, no. 3, pp. 466-474, May 1991.
    • (1991) IEEE Trans. Inf. Theory , vol.37 , Issue.3 , pp. 466-474
    • Yeung, R.W.1
  • 43
    • 77951274410 scopus 로고    scopus 로고
    • A Newton-CG augmented Lagrangian method for semidefinite programming
    • X. Zhao, D. Sun, and K. Toh, "A Newton-CG augmented Lagrangian method for semidefinite programming", SIAM J. Optim., vol. 20, no. 4, pp. 1737-1765, 2010.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1737-1765
    • Zhao, X.1    Sun, D.2    Toh, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.