-
1
-
-
84865090469
-
-
"KDDcup dataset, " 1999. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
-
(1999)
KDDcup Dataset
-
-
-
2
-
-
70350134739
-
The use of computational intelligence in intrusion detection systems: A review
-
S. Wu and W. Banzhaf, "The use of computational intelligence in intrusion detection systems: A review, " Applied Soft Computing, vol. 10, no. 1, pp. 1-35, 2010.
-
(2010)
Applied Soft Computing
, vol.10
, Issue.1
, pp. 1-35
-
-
Wu, S.1
Banzhaf, W.2
-
3
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Z. Q.-Y. Huang, G.B. and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes, " IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, Z.Q.-Y.1
Siew, C.-K.2
-
4
-
-
84865067272
-
Extreme learning machines for intrusion detection
-
IEEE, June 10-12
-
C. Cheng, W. P. Tay, and G.-B. Huang, "Extreme learning machines for intrusion detection, " in Proceedings of the International Joint Conference on Neural Networks (IJCNN'12), pp. 1-8, IEEE, June 10-12, 2012.
-
(2012)
Proceedings of the International Joint Conference on Neural Networks (IJCNN'12)
, pp. 1-8
-
-
Cheng, C.1
Tay, W.P.2
Huang, G.-B.3
-
6
-
-
84904208174
-
Big data analytics for security intelligence
-
Big Data Working Group, Retrieved January 3, 2014
-
Big Data Working Group, "Big data analytics for security intelligence, " 2013. CSA Cloud Security Alliance, Retrieved January 3, 2014, fromhttps://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big-Data-Analytics-for-Security-Intelligence.pdf.
-
(2013)
CSA Cloud Security Alliance
-
-
-
8
-
-
37549003336
-
Mapreduce: Simplified data processing on large clusters
-
Jan
-
J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters, " Communications of the ACM, vol. 51, pp. 107-113, Jan. 2008.
-
(2008)
Communications of the ACM
, vol.51
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
9
-
-
84937708755
-
The apache software foundation
-
The Apache Software Foundation, "Welcome to Apache Hadoop!, " 2013.
-
(2013)
Welcome to Apache Hadoop
-
-
-
11
-
-
84899721363
-
Efficient classification using parallel and scalable compressed model and its application on intrusion detection
-
T. Chen, X. Zhang, S. Jin, and O. Kim, "Efficient classification using parallel and scalable compressed model and its application on intrusion detection, " Expert Systems with Applications, vol. 41, no. 13, pp. 5972-5983, 2014.
-
(2014)
Expert Systems with Applications
, vol.41
, Issue.13
, pp. 5972-5983
-
-
Chen, T.1
Zhang, X.2
Jin, S.3
Kim, O.4
-
12
-
-
84894646147
-
Network anomaly detection: Methods, systems and tools
-
M. Bhuyan, D. Bhattacharyya, and J. Kalita, "Network anomaly detection: Methods, systems and tools, " Communications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 303-336, 2014.
-
(2014)
Communications Surveys & Tutorials, IEEE
, vol.16
, Issue.1
, pp. 303-336
-
-
Bhuyan, M.1
Bhattacharyya, D.2
Kalita, J.3
-
13
-
-
0036085392
-
Intrusion detection using neural networks and support vector machines
-
May 12-17
-
S. Mukkamala, G. Janoski, and A. Sung, "Intrusion detection using neural networks and support vector machines, " in Proceedings of the International Joint Conference on Neural Networks (IJCNN'02), pp. 1702-1707, May 12-17 2002.
-
(2002)
Proceedings of the International Joint Conference on Neural Networks (IJCNN'02)
, pp. 1702-1707
-
-
Mukkamala, S.1
Janoski, G.2
Sung, A.3
-
14
-
-
84897137099
-
A semantic approach to host-based intrusion detection systems using contiguous and discontiguous system call patterns
-
G. Creech and J. Hu, "A semantic approach to host-based intrusion detection systems using contiguous and discontiguous system call patterns, " IEEE Transaction on Computers, vol. 63, no. 4, pp. 807-819, 2014.
-
(2014)
IEEE Transaction on Computers
, vol.63
, Issue.4
, pp. 807-819
-
-
Creech, G.1
Hu, J.2
-
15
-
-
84870243622
-
Parallel extreme learning machine for regression based on mapreduce
-
Feb
-
Q. He, T. Shang, F. Zhuang, and Z. Shi, "Parallel extreme learning machine for regression based on mapreduce, " Neurocomputing, vol. 102, pp. 52-58, Feb. 2013.
-
(2013)
Neurocomputing
, vol.102
, pp. 52-58
-
-
He, Q.1
Shang, T.2
Zhuang, F.3
Shi, Z.4
-
17
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification, " IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 42, no. 2, pp. 513-529, 2012.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
18
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications, " Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
19
-
-
84937684333
-
Elm: Distributed extreme learning machine with mapreduce
-
J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, "Elm: distributed extreme learning machine with mapreduce, " World Wide Web, pp. 1-16, 2013.
-
(2013)
World Wide Web
, pp. 1-16
-
-
Xin, J.1
Wang, Z.2
Chen, C.3
Ding, L.4
Wang, G.5
Zhao, Y.6
-
20
-
-
73949154686
-
OP-ELM: Optimally-pruned extreme learning machine
-
January
-
Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, "OP-ELM: Optimally-pruned extreme learning machine, " IEEE Transactions on Neural Networks, vol. 21, pp. 158-162, January 2010.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
21
-
-
84899750288
-
Improving the intrusion detection systems' performance by correlation as a sample selection method
-
R. Rouhi, F. Keynia, and M. Amiri, "Improving the intrusion detection systems' performance by correlation as a sample selection method, " Journal of Computer Sciences and Applications, vol. 1, no. 3, pp. 33-38, 2013.
-
(2013)
Journal of Computer Sciences and Applications
, vol.1
, Issue.3
, pp. 33-38
-
-
Rouhi, R.1
Keynia, F.2
Amiri, M.3
|