메뉴 건너뛰기




Volumn 42, Issue 1, 2015, Pages 27-54

Using Discriminative Dimensionality Reduction to Visualize Classifiers

Author keywords

Fisher metric; Model interpretation; Non linear dimensionality reduction; t SNE; Visualization

Indexed keywords

DATA REDUCTION; FLOW VISUALIZATION; VISUALIZATION;

EID: 84937634289     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-014-9394-1     Document Type: Article
Times cited : (32)

References (45)
  • 1
    • 12144251726 scopus 로고    scopus 로고
    • High-dimensional labeled data analysis with topology representing graphs
    • Aupetit M, Catz T (2005) High-dimensional labeled data analysis with topology representing graphs. Neurocomputing 63:139–169
    • (2005) Neurocomputing , vol.63 , pp. 139-169
    • Aupetit, M.1    Catz, T.2
  • 2
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385–2404
    • (2000) Neural Comput , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 3
    • 84861139710 scopus 로고    scopus 로고
    • A general framework for dimensionality reducing data visualization mapping
    • Bunte K, Biehl M, Hammer B (2012) A general framework for dimensionality reducing data visualization mapping. Neural Comput 24(3):771–804
    • (2012) Neural Comput , vol.24 , Issue.3 , pp. 771-804
    • Bunte, K.1    Biehl, M.2    Hammer, B.3
  • 4
  • 5
    • 50149121547 scopus 로고    scopus 로고
    • Caragea D, Cook D, Wickham H, Honavar V. Visual methods for examining svm classifiers. In: Simoff et al (2008) Visual data mining: theory, techniques and tools for visual analytics. (Lecture Notes in Computer Science), vol 4404. Springer, pp 136–153
    • Caragea D, Cook D, Wickham H, Honavar V. Visual methods for examining svm classifiers. In: Simoff et al (2008) Visual data mining: theory, techniques and tools for visual analytics. (Lecture Notes in Computer Science), vol 4404. Springer, pp 136–153
  • 7
    • 35048898751 scopus 로고    scopus 로고
    • Informed projections
    • Becker S, Thrun S, Obermayer K, (eds), MIT Press, Cambridge
    • Cohn D (2003) Informed projections. In: Becker S, Thrun S, Obermayer K (eds) NIPS. MIT Press, Cambridge, pp 849–856
    • (2003) NIPS , pp. 849-856
    • Cohn, D.1
  • 8
    • 0037191702 scopus 로고    scopus 로고
    • Class visualization of high-dimensional data with applications
    • Dhillon IS, Modha DS, Spangler WS (2002) Class visualization of high-dimensional data with applications. Comput Stat Data Anal 41(1):59–90
    • (2002) Comput Stat Data Anal , vol.41 , Issue.1 , pp. 59-90
    • Dhillon, I.S.1    Modha, D.S.2    Spangler, W.S.3
  • 9
    • 84872945545 scopus 로고    scopus 로고
    • dos Santos Amorim EP, Brazil EV, II JD, Joia P, Nonato LG, Sousa MC (2012) ilamp: exploring high-dimensional spacing through backward multidimensional projection. In: IEEE VAST, IEEE Computer Society, pp 53–62
    • dos Santos Amorim EP, Brazil EV, II JD, Joia P, Nonato LG, Sousa MC (2012) ilamp: exploring high-dimensional spacing through backward multidimensional projection. In: IEEE VAST, IEEE Computer Society, pp 53–62
  • 10
    • 84937643115 scopus 로고    scopus 로고
    • Frank A, Asuncion A (2010) UCI machine learning repository. Accessed 1 July 2012
    • Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 1 July 2012
  • 11
    • 84937637784 scopus 로고    scopus 로고
    • Gisbrecht A, Hammer B Data visualization by nonlinear dimensionality reduction. WIREs Data Min Knowl Discov
    • Gisbrecht A, Hammer B Data visualization by nonlinear dimensionality reduction. WIREs Data Min Knowl Discov
  • 12
    • 84868020477 scopus 로고    scopus 로고
    • Discriminative dimensionality reduction mappings
    • IDA (Lecture Notes in Computer Science): Springer
    • Gisbrecht A, Hofmann D, Hammer B (2012) Discriminative dimensionality reduction mappings. In: Hollmén J, Klawonn F, Tucker A (eds) IDA (Lecture Notes in Computer Science), Springer, pp 126–138
    • (2012) Hollmén J , pp. 126-138
    • Gisbrecht, A.1    Hofmann, D.2    Hammer, B.3    Klawonn, F.4    Tucker, A.5
  • 14
    • 33745887620 scopus 로고    scopus 로고
    • Neighbourhood components analysis. In: Advances in neural information processing systems vol 17. MIT Press
    • Goldberger J, Roweis S, Hinton G, Salakhutdinov R (2004) Neighbourhood components analysis. In: Advances in neural information processing systems vol 17. MIT Press, pp 513–520
    • (2004) pp 513–520
    • Goldberger, J.1    Roweis, S.2    Hinton, G.3    Salakhutdinov, R.4
  • 15
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity datasets
    • Hammer B, Hasenfuss A (2010) Topographic mapping of large dissimilarity datasets. Neural Comput 22(9):2229–2284
    • (2010) Neural Comput , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 16
    • 84894074213 scopus 로고    scopus 로고
    • Learning vector quantization for (dis-)similarities
    • Hammer B, Hofmann D, Schleif F-M, Zhu X (2013) Learning vector quantization for (dis-)similarities. Neurocomputing 131:43–51. doi:10.1016/j.neucom.2013.05.054
    • (2013) Neurocomputing , vol.131 , pp. 43-51
    • Hammer, B.1    Hofmann, D.2    Schleif, F.-M.3    Zhu, X.4
  • 18
    • 84901623923 scopus 로고    scopus 로고
    • Learning interpretable kernelized prototype-based models
    • Hofmann D, Schleif F-M, Hammer B (2013) Learning interpretable kernelized prototype-based models. Neurocomputing 141:84–96. doi:10.1016/j.neucom.2014.03.003
    • (2013) Neurocomputing , vol.141 , pp. 84-96
    • Hofmann, D.1    Schleif, F.-M.2    Hammer, B.3
  • 19
    • 84937628251 scopus 로고    scopus 로고
    • House TW (2012) Big data research and development initiative. Accessed 1 July 2012
    • House TW (2012) Big data research and development initiative. http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal. Accessed 1 July 2012
  • 21
    • 0003505617 scopus 로고    scopus 로고
    • LVQ\_PAK: the learning vector quantization program package
    • Helsinki University of Technology, Laboratory of Computer and Information Science
    • Kohonen T, Hynninen J, Kangas J, Laaksonen J, Torkkola K (Jan. 1996) LVQ\_PAK: the learning vector quantization program package. Report A30, Helsinki University of Technology, Laboratory of Computer and Information Science
    • (1996) Report A30
    • Kohonen, T.1    Hynninen, J.2    Kangas, J.3    Laaksonen, J.4    Torkkola, K.5
  • 22
    • 33644752875 scopus 로고    scopus 로고
    • Decision trees for classification: a review and some new results
    • Kothari R, Dong M (2001) Decision trees for classification: a review and some new results. Pattern Recognit 171:169–184
    • (2001) Pattern Recognit , vol.171 , pp. 169-184
    • Kothari, R.1    Dong, M.2
  • 23
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Thompson JG, (ed), MIT Press, Cambridge
    • Kreßel UH-G (1999) Pairwise classification and support vector machines. In: Thompson JG (ed) Advances in kernel methods. MIT Press, Cambridge
    • (1999) Advances in kernel methods
    • Kreßel, U.H.-G.1
  • 25
    • 33749258406 scopus 로고    scopus 로고
    • Kernel clustering-based discriminant analysis
    • Ma B, Qu H, Wong H (2007) Kernel clustering-based discriminant analysis. Pattern Recognit 40(1):324–327
    • (2007) Pattern Recognit , vol.40 , Issue.1 , pp. 324-327
    • Ma, B.1    Qu, H.2    Wong, H.3
  • 26
    • 0036643059 scopus 로고    scopus 로고
    • Decision region connectivity analysis: a method for analyzing high-dimensional classifiers
    • Melnik O (2002) Decision region connectivity analysis: a method for analyzing high-dimensional classifiers. Mach Learn 48(1–3):321–351
    • (2002) Mach Learn , vol.48 , Issue.1-3 , pp. 321-351
    • Melnik, O.1
  • 27
  • 28
    • 9144260753 scopus 로고    scopus 로고
    • Improved learning of riemannian metrics for exploratory analysis
    • Peltonen J, Klami A, Kaski S (2004) Improved learning of riemannian metrics for exploratory analysis. Neural Netw 17:1087–1100
    • (2004) Neural Netw , vol.17 , pp. 1087-1100
    • Peltonen, J.1    Klami, A.2    Kaski, S.3
  • 30
    • 84937634276 scopus 로고    scopus 로고
    • Roweis S (2012) Machine learning data sets. Accessed 1 July 2012
    • Roweis S (2012) Machine learning data sets. http://www.cs.nyu.edu/~roweis/data.html. Accessed 1 July 2012
  • 32
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider P, Biehl M, Hammer B (2009) Adaptive relevance matrices in learning vector quantization. Neural Comput 21:3532–3561
    • (2009) Neural Comput , vol.21 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 34
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo S, Obermayer K (2003) Soft learning vector quantization. Neural Comput 15(7):1589–1604
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 35
    • 50149098968 scopus 로고    scopus 로고
    • Visual data mining: theory, techniques and tools for visual analytics (Lecture Notes in Computer Science), vol 4404
    • Simoff SJ, Böhlen MH, Mazeika A editors (2008) Visual data mining: theory, techniques and tools for visual analytics (Lecture Notes in Computer Science), vol 4404. Springer
    • (2008) Springer
    • Simoff, S.J.1    Böhlen, M.H.2    editors, M.A.3
  • 36
    • 0008665337 scopus 로고
    • Bandwidth selection in kernel density estimation: a review. In: CORE and Institut de Statistique
    • Turlach BA (1993) Bandwidth selection in kernel density estimation: a review. In: CORE and Institut de Statistique, pp 23–493
    • (1993) pp 23–493
    • Turlach, B.A.1
  • 38
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-sne
    • van der Maaten L, Hinton G (2008) Visualizing high-dimensional data using t-sne. J Mach Learn Res 9:2579–2605
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • van der Maaten, L.1    Hinton, G.2
  • 39
    • 38349018685 scopus 로고    scopus 로고
    • Dimensionality reduction: a comparative review. Technical report, Tilburg University Technical Report
    • van der Maaten L, Postma E, van den Herik H (2009) Dimensionality reduction: a comparative review. Technical report, Tilburg University Technical Report, TiCC-TR 2009–005
    • (2009) TiCC-TR , pp. 2005-2009
    • van der Maaten, L.1    Postma, E.2    van den Herik, H.3
  • 41
    • 84947754719 scopus 로고    scopus 로고
    • Vellido A, Martin-Guerroro J, Lisboa P (2012) Making machine learning models interpretable. In: ESANN’12
    • Vellido A, Martin-Guerroro J, Lisboa P (2012) Making machine learning models interpretable. In: ESANN’12
  • 42
    • 77949507946 scopus 로고    scopus 로고
    • Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    • Venna J, Peltonen J, Nybo K, Aidos H, Kaski S (2010) Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J Mach Learn Res 11:451–490
    • (2010) J Mach Learn Res , vol.11 , pp. 451-490
    • Venna, J.1    Peltonen, J.2    Nybo, K.3    Aidos, H.4    Kaski, S.5
  • 45
    • 84897521276 scopus 로고    scopus 로고
    • Scalable optimization of neighbor embedding for visualization. In: Dasgupta S, Mcallester D (eds) Proceedings of the 30th International Conference on Machine Learning (ICML-13), vol 28, pp 127–135
    • Yang Z, Peltonen J, Kaski S (2013) Scalable optimization of neighbor embedding for visualization. In: Dasgupta S, Mcallester D (eds) Proceedings of the 30th International Conference on Machine Learning (ICML-13), vol 28, pp 127–135. JMLR Workshop and Conference Proceedings
    • (2013) JMLR Workshop and Conference Proceedings
    • Yang, Z.1    Peltonen, J.2    Kaski, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.