메뉴 건너뛰기




Volumn 2014-September, Issue Septmber, 2014, Pages

Motion detection via a couple of auto-encoder networks

Author keywords

deep auto encoder network; motion detection; online learning

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS; MOTION ANALYSIS; SOCIAL NETWORKING (ONLINE); VIDEO SIGNAL PROCESSING;

EID: 84937510544     PISSN: 19457871     EISSN: 1945788X     Source Type: Conference Proceeding    
DOI: 10.1109/ICME.2014.6890140     Document Type: Conference Paper
Times cited : (23)

References (24)
  • 1
    • 84874545895 scopus 로고    scopus 로고
    • Moving object detection by detecting contiguous outliers in the low-rank representation
    • Xiaowei. Zhou, Can Yang, andWeichuan Yu, " Moving object detection by detecting contiguous outliers in the low-rank representation," IEEE TPAMI, vol. 35 no. 3, pp. 597-610, 2013.
    • (2013) IEEE TPAMI , vol.35 , Issue.3 , pp. 597-610
    • Zhou, X.1    Yang, C.2    Yu, W.3
  • 2
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • C. Stauffer andW. Grimson, Adaptive Background Mixture Models for Real-Time Tracking, In CVPR, 1999.
    • (1999) CVPR
    • Stauffer, C.1    Grimson, W.2
  • 3
    • 5044221727 scopus 로고    scopus 로고
    • Motion-based background subtraction using ada ptive kernel density estimation
    • A. Mittal and N. Paragios, Motion-based background subtraction using ada ptive kernel density estimation, In CVPR, 2004.
    • (2004) CVPR
    • Mittal, A.1    Paragios, N.2
  • 4
    • 0345371265 scopus 로고    scopus 로고
    • Background subtraction for non-stationary scenes
    • T. Matsuyama, T. Ohya, and H. Habe, Background subtraction for non-stationary scenes,In ACCV, 2000.
    • (2000) ACCV
    • Matsuyama, T.1    Ohya, T.2    Habe, H.3
  • 5
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foregroundbackground segmentation using codebook model
    • K. Kim, T. Chalidabhongs e, D. Harwood, and L. Davis, Real-time foregroundbackground segmentation using codebook model, Real-time Imaging, vol. 11, no. 3, pp. 172C185, 2005.
    • (2005) Real-time Imaging , vol.11 , Issue.3 , pp. 172C185
    • Kim, K.1    Chalidabhongse, T.2    Harwood, D.3    Davis, L.4
  • 6
    • 0000160614 scopus 로고    scopus 로고
    • A probabilistic background model for tracking
    • J. Rittscher, J. Kato, S. Joga, and A. Blake, A probabilistic background model for tracking, In ECCV, 2000.
    • (2000) ECCV
    • Rittscher, J.1    Kato, J.2    Joga, S.3    Blake, A.4
  • 7
    • 0344551957 scopus 로고    scopus 로고
    • Segmenting foreground objects from a dynamic textured background via a robust kalman filter
    • J. Zhong and S. Sclaroff, Segmenting foreground objects from a dynamic textured background via a robust kalman filter, In ICCV, 2003.
    • (2003) ICCV
    • Zhong, J.1    Sclaroff, S.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 10
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.4
  • 11
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • Wanli Ouyang, and Xiaogang Wan g. Joint Deep Learning for Pedestrian Detection. In ICCV, 2013.
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 12
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
    • Quoc V.,Le Will Y. Zou,Serena Y. Yeung,Andrew Y Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis In CVPR 3361C3368 2011.
    • (2011) CVPR , pp. 3361C3368
    • Quoc, V.1    Le Will, Y.Z.2    Yeung, S.Y.3    Ng, A.Y.4
  • 13
    • 84866720201 scopus 로고    scopus 로고
    • Robust boltzmann machines for recognition and denoising
    • Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hintion. Robust Boltzmann Machines for Recognition and Denoising, In CVPR,2012.
    • (2012) CVPR
    • Tang, Y.1    Salakhutdinov, R.2    Hintion, G.3
  • 14
    • 85157999846 scopus 로고    scopus 로고
    • Modeling human motion using binary latent vairiables
    • G.W. Taylor, G. E. Hinton, and S. Roweis. Modeling Human Motion Using Binary Latent Vairiables, In NIPS, 2006.
    • (2006) NIPS
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.3
  • 15
    • 84877781449 scopus 로고    scopus 로고
    • Weakly supervised learning of foregroundbackground segmentation using masked rbms
    • N. Heess, N. L. Roux, and J.Winn. Weakly supervised learning of foregroundbackground segmentation using masked RBMs. In ICANN, 2011.
    • (2011) ICANN
    • Heess, N.1    Roux, N.L.2    Winn, J.3
  • 17
    • 77953220298 scopus 로고    scopus 로고
    • Learning with dynamic group sparsity
    • J. Huang, X. Huang, and D. N. Metaxas. Learning with dynamic group sparsity. In ICCV, pages 64C71, 2009.
    • (2009) ICCV , pp. 64C71
    • Huang, J.1    Huang, X.2    Metaxas, D.N.3
  • 18
    • 84887379127 scopus 로고    scopus 로고
    • Online robust dictionary learning
    • Cewu Lu, Jianping Shi, and Jiaya jia. Online Robust Dictionary Learning. In CVPR, 2013.
    • (2013) CVPR
    • Lu, C.1    Shi, J.2    Jia, J.3
  • 21
    • 0034856593 scopus 로고    scopus 로고
    • A background model initialization algorithm for video surveillance
    • D. Gutchess, M. Trajkovics, and E. Cohen-Solal, et al. A background model initialization algorithm for video surveillance. In ICCV, 2001.
    • (2001) ICCV
    • Gutchess, D.1    Trajkovics, M.2    Cohen-Solal, E.3
  • 22
    • 33750378348 scopus 로고    scopus 로고
    • A new training and pruning algorithm based on node dependence and jacobian rank deficiency
    • Jinhua Xu, DanielW. C. Ho, A new training and pruning algorithm based on node dependence and Jacobian rank deficiency, Neurocomputing, 70, page 544-558, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 544-558
    • Xu, J.1    Ho, D.C.2
  • 23
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detectiong
    • L. Li,W. Huang, I. Gu, and Q. Tian, Statistical modeling of complex backgrounds for foreground object detectiong, IEEE Trans. Image Processing, vol. 13, no. 11, pp. 1459-1472,2004.
    • (2004) IEEE Trans. Image Processing , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.