-
1
-
-
84874545895
-
Moving object detection by detecting contiguous outliers in the low-rank representation
-
Xiaowei. Zhou, Can Yang, andWeichuan Yu, " Moving object detection by detecting contiguous outliers in the low-rank representation," IEEE TPAMI, vol. 35 no. 3, pp. 597-610, 2013.
-
(2013)
IEEE TPAMI
, vol.35
, Issue.3
, pp. 597-610
-
-
Zhou, X.1
Yang, C.2
Yu, W.3
-
2
-
-
0032634283
-
Adaptive background mixture models for real-time tracking
-
C. Stauffer andW. Grimson, Adaptive Background Mixture Models for Real-Time Tracking, In CVPR, 1999.
-
(1999)
CVPR
-
-
Stauffer, C.1
Grimson, W.2
-
3
-
-
5044221727
-
Motion-based background subtraction using ada ptive kernel density estimation
-
A. Mittal and N. Paragios, Motion-based background subtraction using ada ptive kernel density estimation, In CVPR, 2004.
-
(2004)
CVPR
-
-
Mittal, A.1
Paragios, N.2
-
4
-
-
0345371265
-
Background subtraction for non-stationary scenes
-
T. Matsuyama, T. Ohya, and H. Habe, Background subtraction for non-stationary scenes,In ACCV, 2000.
-
(2000)
ACCV
-
-
Matsuyama, T.1
Ohya, T.2
Habe, H.3
-
5
-
-
21644463503
-
Real-time foregroundbackground segmentation using codebook model
-
K. Kim, T. Chalidabhongs e, D. Harwood, and L. Davis, Real-time foregroundbackground segmentation using codebook model, Real-time Imaging, vol. 11, no. 3, pp. 172C185, 2005.
-
(2005)
Real-time Imaging
, vol.11
, Issue.3
, pp. 172C185
-
-
Kim, K.1
Chalidabhongse, T.2
Harwood, D.3
Davis, L.4
-
6
-
-
0000160614
-
A probabilistic background model for tracking
-
J. Rittscher, J. Kato, S. Joga, and A. Blake, A probabilistic background model for tracking, In ECCV, 2000.
-
(2000)
ECCV
-
-
Rittscher, J.1
Kato, J.2
Joga, S.3
Blake, A.4
-
7
-
-
0344551957
-
Segmenting foreground objects from a dynamic textured background via a robust kalman filter
-
J. Zhong and S. Sclaroff, Segmenting foreground objects from a dynamic textured background via a robust kalman filter, In ICCV, 2003.
-
(2003)
ICCV
-
-
Zhong, J.1
Sclaroff, S.2
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
10
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.4
-
11
-
-
84898788725
-
Joint deep learning for pedestrian detection
-
Wanli Ouyang, and Xiaogang Wan g. Joint Deep Learning for Pedestrian Detection. In ICCV, 2013.
-
(2013)
ICCV
-
-
Ouyang, W.1
Wang, X.2
-
12
-
-
80052874098
-
Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
-
Quoc V.,Le Will Y. Zou,Serena Y. Yeung,Andrew Y Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis In CVPR 3361C3368 2011.
-
(2011)
CVPR
, pp. 3361C3368
-
-
Quoc, V.1
Le Will, Y.Z.2
Yeung, S.Y.3
Ng, A.Y.4
-
13
-
-
84866720201
-
Robust boltzmann machines for recognition and denoising
-
Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hintion. Robust Boltzmann Machines for Recognition and Denoising, In CVPR,2012.
-
(2012)
CVPR
-
-
Tang, Y.1
Salakhutdinov, R.2
Hintion, G.3
-
14
-
-
85157999846
-
Modeling human motion using binary latent vairiables
-
G.W. Taylor, G. E. Hinton, and S. Roweis. Modeling Human Motion Using Binary Latent Vairiables, In NIPS, 2006.
-
(2006)
NIPS
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.3
-
15
-
-
84877781449
-
Weakly supervised learning of foregroundbackground segmentation using masked rbms
-
N. Heess, N. L. Roux, and J.Winn. Weakly supervised learning of foregroundbackground segmentation using masked RBMs. In ICANN, 2011.
-
(2011)
ICANN
-
-
Heess, N.1
Roux, N.L.2
Winn, J.3
-
17
-
-
77953220298
-
Learning with dynamic group sparsity
-
J. Huang, X. Huang, and D. N. Metaxas. Learning with dynamic group sparsity. In ICCV, pages 64C71, 2009.
-
(2009)
ICCV
, pp. 64C71
-
-
Huang, J.1
Huang, X.2
Metaxas, D.N.3
-
18
-
-
84887379127
-
Online robust dictionary learning
-
Cewu Lu, Jianping Shi, and Jiaya jia. Online Robust Dictionary Learning. In CVPR, 2013.
-
(2013)
CVPR
-
-
Lu, C.1
Shi, J.2
Jia, J.3
-
19
-
-
71949110269
-
Compressive sensing background subtraction
-
V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and R. Chellappa. Compressive sensing background subtraction. ECCV, pages 155C168, 2008.
-
(2008)
ECCV
, pp. 155C168
-
-
Cevher, V.1
Sankaranarayanan, A.2
Duarte, M.3
Reddy, D.4
Baraniuk, R.5
Chellappa, R.6
-
20
-
-
84954202765
-
Online incremental feature learning with denoising autoencoders
-
Guanyu Zhou, Kihyuk Sohn, and Honglak Lee, Online Incremental Feature Learning with Denoising Autoencoders, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics,Pages: 1453-1461, 2012.
-
(2012)
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics
, pp. 1453-1461
-
-
Zhou, G.1
Sohn, K.2
Lee, H.3
-
21
-
-
0034856593
-
A background model initialization algorithm for video surveillance
-
D. Gutchess, M. Trajkovics, and E. Cohen-Solal, et al. A background model initialization algorithm for video surveillance. In ICCV, 2001.
-
(2001)
ICCV
-
-
Gutchess, D.1
Trajkovics, M.2
Cohen-Solal, E.3
-
22
-
-
33750378348
-
A new training and pruning algorithm based on node dependence and jacobian rank deficiency
-
Jinhua Xu, DanielW. C. Ho, A new training and pruning algorithm based on node dependence and Jacobian rank deficiency, Neurocomputing, 70, page 544-558, 2006.
-
(2006)
Neurocomputing
, vol.70
, pp. 544-558
-
-
Xu, J.1
Ho, D.C.2
-
23
-
-
7444243389
-
Statistical modeling of complex backgrounds for foreground object detectiong
-
L. Li,W. Huang, I. Gu, and Q. Tian, Statistical modeling of complex backgrounds for foreground object detectiong, IEEE Trans. Image Processing, vol. 13, no. 11, pp. 1459-1472,2004.
-
(2004)
IEEE Trans. Image Processing
, vol.13
, Issue.11
, pp. 1459-1472
-
-
Li, L.1
Huang, W.2
Gu, I.3
Tian, Q.4
-
24
-
-
79960675858
-
Robust principal component analysis?
-
E. Candes, X. Li, Y. Ma, and J. Wright, Robust Principal Component Analysis? Journal of the ACM, vol. 58, issue,3, 2011.
-
(2011)
Journal of the ACM
, vol.58
, Issue.3
-
-
Candes, E.1
Li, X.2
Ma, Y.3
Wright, J.4
|