메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 605-613

Early burst detection for memory-efficient image retrieval

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; IMAGE ANALYSIS; IMAGE ENHANCEMENT; IMAGE RETRIEVAL; QUERY PROCESSING;

EID: 84937220933     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298659     Document Type: Conference Paper
Times cited : (46)

References (45)
  • 1
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012
    • (2012) CVPR
    • Arandjelovic, R.1    Zisserman, A.2
  • 3
    • 84898788849 scopus 로고    scopus 로고
    • Quantize and conquer: A dimensionalityrecursive solution to clustering, vector quantization, and image retrieval
    • Y. Avrithis. Quantize and conquer: A dimensionalityrecursive solution to clustering, vector quantization, and image retrieval. In ICCV. 2013
    • (2013) ICCV
    • Avrithis, Y.1
  • 4
    • 84894436711 scopus 로고    scopus 로고
    • Hough pyramid matching: Speeded-up geometry re-ranking for large scale image retrieval
    • Y. Avrithis and G. Tolias. Hough pyramid matching: Speeded-up geometry re-ranking for large scale image retrieval. IJCV, 107(1):1-19, 2014
    • (2014) IJCV , vol.107 , Issue.1 , pp. 1-19
    • Avrithis, Y.1    Tolias, G.2
  • 5
  • 6
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In CVPR, 2005
    • (2005) CVPR
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 8
    • 84866669546 scopus 로고    scopus 로고
    • Image categorization using Fisher kernels of non-iid image models
    • R. Cinbis, J. Verbeek, and C. Schmid. Image categorization using Fisher kernels of non-iid image models. In CVPR, 2012
    • (2012) CVPR
    • Cinbis, R.1    Verbeek, J.2    Schmid, C.3
  • 10
    • 77955989584 scopus 로고    scopus 로고
    • Global and efficient selfsimilarity for object classification and detection
    • T. Deselaers and V. Ferrari. Global and efficient selfsimilarity for object classification and detection. In CVPR, 2010
    • (2010) CVPR
    • Deselaers, T.1    Ferrari, V.2
  • 11
    • 0742286179 scopus 로고    scopus 로고
    • Spectral grouping using the Nyström method
    • C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. PAMI, 26(2):214-225, 2004
    • (2004) PAMI , vol.26 , Issue.2 , pp. 214-225
    • Fowlkes, C.1    Belongie, S.2    Chung, F.3    Malik, J.4
  • 13
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 14
    • 70450183957 scopus 로고    scopus 로고
    • On the burstiness of visual elements
    • H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In CVPR, 2009
    • (2009) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 15
    • 77951207698 scopus 로고    scopus 로고
    • Improving bag-offeatures for large scale image search
    • H. Jégou, M. Douze, and C. Schmid. Improving bag-offeatures for large scale image search. IJCV, 87(3):316-336, 2010
    • (2010) IJCV , vol.87 , Issue.3 , pp. 316-336
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 16
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. PAMI, 33(1):117-128, 2011
    • (2011) PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 17
    • 84865584175 scopus 로고    scopus 로고
    • Aggregating local image descriptors into compact codes
    • H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. Aggregating local image descriptors into compact codes. PAMI, 34(9):1704-1716, 2012
    • (2012) PAMI , vol.34 , Issue.9 , pp. 1704-1716
    • Jégou, H.1    Perronnin, F.2    Douze, M.3    Sanchez, J.4    Perez, P.5    Schmid, C.6
  • 18
    • 0001409330 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In ECML, 1998
    • (1998) ECML
    • Lewis, D.1
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 31844437086 scopus 로고    scopus 로고
    • Modeling word burstiness using the dirichlet distribution
    • R. E. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the dirichlet distribution. In ICML, 2005
    • (2005) ICML
    • Madsen, R.E.1    Kauchak, D.2    Elkan, C.3
  • 21
    • 9644260534 scopus 로고    scopus 로고
    • Scale & affine invariant interest point detectors
    • K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 60(1):63-86, 2004
    • (2004) IJCV , vol.60 , Issue.1 , pp. 63-86
    • Mikolajczyk, K.1    Schmid, C.2
  • 23
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2002
    • (2002) NIPS
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 24
    • 70450179951 scopus 로고    scopus 로고
    • Efficient representation of local geometry for large scale object retrieval
    • M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009
    • (2009) CVPR
    • Perdoch, M.1    Chum, O.2    Matas, J.3
  • 25
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 26
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 27
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, J. Sivic, M. Isard, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 28
    • 84911416865 scopus 로고    scopus 로고
    • Detection, rectification and segmentation of coplanar repeated patterns
    • J. Pritts, O. Chum, and J. Matas. Detection, rectification and segmentation of coplanar repeated patterns. In CVPR, 2014
    • (2014) CVPR
    • Pritts, J.1    Chum, O.2    Matas, J.3
  • 29
    • 80052905439 scopus 로고    scopus 로고
    • Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors
    • D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In CVPR, 2011
    • (2011) CVPR
    • Qin, D.1    Gammeter, S.2    Bossard, L.3    Quack, T.4    Van Gool, L.5
  • 30
    • 84887392826 scopus 로고    scopus 로고
    • Query adaptive similarity for large scale object retrieval
    • D. Qin, C. Wengert, and L. Van Gool. Query adaptive similarity for large scale object retrieval. In CVPR, 2013
    • (2013) CVPR
    • Qin, D.1    Wengert, C.2    Van Gool, L.3
  • 31
    • 84871366150 scopus 로고    scopus 로고
    • Correlation-based burstiness for logo retrieval
    • J. Revaud, M. Douze, and C. Schmid. Correlation-based burstiness for logo retrieval. In ACM Multimedia, 2012
    • (2012) ACM Multimedia
    • Revaud, J.1    Douze, M.2    Schmid, C.3
  • 32
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Com-putation, 10(5):1299-1319, 1998
    • (1998) Neural Com-putation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.3
  • 33
    • 34948845616 scopus 로고    scopus 로고
    • Matching local self-similarities across images and videos
    • E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In CVPR, 2007
    • (2007) CVPR
    • Shechtman, E.1    Irani, M.2
  • 34
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888-905, 2000
    • (2000) PAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 35
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, 2003
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 36
    • 80052280544 scopus 로고    scopus 로고
    • Balancing clusters to reduce response time variability in large scale image search
    • R. Tavenard, H. Jégou, and L. Amsaleg. Balancing clusters to reduce response time variability in large scale image search. In CBMI, 2011
    • (2011) CBMI
    • Tavenard, R.1    Jégou, H.2    Amsaleg, L.3
  • 37
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013
    • (2013) ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 38
    • 84929317236 scopus 로고    scopus 로고
    • Orientation covariant aggregation of local descriptors with embeddings
    • G. Tolias, T. Furon, and H. Jégou. Orientation covariant aggregation of local descriptors with embeddings. In ECCV, 2014
    • (2014) ECCV
    • Tolias, G.1    Furon, T.2    Jégou, H.3
  • 39
    • 84902375912 scopus 로고    scopus 로고
    • Visual query expansion with or without geometry: Refining local descriptors by feature aggregation
    • G. Tolias and H. Jégou. Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recognition, 47(10):3466-3476, 2014
    • (2014) Pattern Recognition , vol.47 , Issue.10 , pp. 3466-3476
    • Tolias, G.1    Jégou, H.2
  • 40
    • 84871358497 scopus 로고    scopus 로고
    • Symcity: Feature selection by symmetry for large scale image retrieval
    • G. Tolias, Y. Kalantidis, and Y. Avrithis. Symcity: Feature selection by symmetry for large scale image retrieval. In ACM Multimedia, 2012
    • (2012) ACM Multimedia
    • Tolias, G.1    Kalantidis, Y.2    Avrithis, Y.3
  • 41
    • 84887329472 scopus 로고    scopus 로고
    • Visual place recognition with repetitive structures
    • A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place recognition with repetitive structures. In CVPR, 2013
    • (2013) CVPR
    • Torii, A.1    Sivic, J.2    Pajdla, T.3    Okutomi, M.4
  • 42
    • 77953218614 scopus 로고    scopus 로고
    • Better matching with fewer features: The selection of useful features in large database recognition problems
    • P. Turcot and D. Lowe. Better matching with fewer features: the selection of useful features in large database recognition problems. In ICCV, 2009
    • (2009) ICCV
    • Turcot, P.1    Lowe, D.2
  • 43
    • 70450153793 scopus 로고    scopus 로고
    • Quick shift and kernel methods for mode seeking
    • A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In ECCV, 2008
    • (2008) ECCV
    • Vedaldi, A.1    Soatto, S.2
  • 44
    • 34948826471 scopus 로고    scopus 로고
    • Learning local image descriptors
    • S. Winder and M. Brown. Learning local image descriptors. In CVPR, 2007
    • (2007) CVPR
    • Winder, S.1    Brown, M.2
  • 45
    • 70450208928 scopus 로고    scopus 로고
    • Picking the best daisy
    • S. Winder and G. Hua. Picking the best daisy. In CVPR, 2009.
    • (2009) CVPR
    • Winder, S.1    Hua, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.