메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2184-2191

Image categorization using Fisher kernels of non-iid image models

Author keywords

[No Author keywords available]

Indexed keywords

BAG OF WORDS; BASIC MODELS; CO-OCCURRENCE; EMBEDDINGS; FISHER KERNELS; GAUSSIAN MIXTURES; IMAGE CATEGORIZATION; IMAGE MODELS; IMPROVING PERFORMANCE; LATENT TOPIC MODEL; LATENT VARIABLE; LINEAR CLASSIFIERS; LOCAL DESCRIPTORS; LOCAL REGION; LOG LIKELIHOOD; MODEL PARAMETERS; NON-LINEAR TRANSFORMATIONS; VARIATIONAL INFERENCE; VISUAL WORD;

EID: 84866669546     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247926     Document Type: Conference Paper
Times cited : (45)

References (22)
  • 2
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1/2):177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 6
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In NIPS, 1999.
    • (1999) NIPS
    • Jaakkola, T.1    Haussler, D.2
  • 7
    • 70450183957 scopus 로고    scopus 로고
    • On the burstiness of visual elements
    • H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In CVPR, 2009.
    • (2009) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 9
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, Z. Ghahramani, T. Jaakola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakola, T.3    Saul, L.4
  • 10
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with Fisher vectors for image categorization
    • J. Krapac, J. Verbeek, and F. Jurie. Modeling spatial layout with Fisher vectors for image categorization. In ICCV, 2011.
    • (2011) ICCV
    • Krapac, J.1    Verbeek, J.2    Jurie, F.3
  • 11
    • 63149160578 scopus 로고    scopus 로고
    • Latent mixture vocabularies for object categorization and segmentation
    • D. Larlus and F. Jurie. Latent mixture vocabularies for object categorization and segmentation. Image and Vision Computing, 27(5):523-534, 2009.
    • (2009) Image and Vision Computing , vol.27 , Issue.5 , pp. 523-534
    • Larlus, D.1    Jurie, F.2
  • 12
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 13
    • 31844437086 scopus 로고    scopus 로고
    • Modeling word burstiness using the Dirichlet distribution
    • R. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the Dirichlet distribution. In ICML, 2005.
    • (2005) ICML
    • Madsen, R.1    Kauchak, D.2    Elkan, C.3
  • 15
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 16
    • 77956008923 scopus 로고    scopus 로고
    • Large-scale image categorization with explicit data embedding
    • F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image categorization with explicit data embedding. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Sánchez, J.2    Liu, Y.3
  • 17
    • 79959771606 scopus 로고    scopus 로고
    • Improving the Fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 19
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 20
    • 77955989063 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR, 2010.
    • (2010) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 21
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In ICCV, 2005.
    • (2005) ICCV
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 22
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV, 73(2):213-238, 2007.
    • (2007) IJCV , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszałek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.