-
1
-
-
77957362548
-
Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives
-
1
-
R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Nonlinear Sci. Numer. Simul., 16 (2011), 1490-1500. 1
-
(2011)
Nonlinear Sci. Numer. Simul
, vol.16
, pp. 1490-1500
-
-
Almeida, R.1
Torres, D.F.M.2
-
2
-
-
0004225568
-
On a concept of derivative of complex order with application to special functions
-
6
-
L. M. B. C. Campos, On a concept of derivative of complex order with application to special functions, IMA J. Appl. Math., 33 (1984), 109-133. 6
-
(1984)
IMA J. Appl. Math
, vol.33
, pp. 109-133
-
-
Campos, L.M.B.C.1
-
3
-
-
0006552740
-
On rules of derivation with complex order of analytic and branched functions
-
6
-
L. M. B. C. Campos, On rules of derivation with complex order of analytic and branched functions, Portugal. Math., 43 (1985), 347-376. 6
-
(1985)
Portugal. Math
, vol.43
, pp. 347-376
-
-
Campos, L.M.B.C.1
-
4
-
-
0006590590
-
On a systematic approach to some properties of special functions
-
6
-
L. M. B. C. Campos, On a systematic approach to some properties of special functions, IMA J. Appl. Math., 36 (1986), 191-206. 6
-
(1986)
IMA J. Appl. Math
, vol.36
, pp. 191-206
-
-
Campos, L.M.B.C.1
-
5
-
-
0013226854
-
-
Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C., 1.2
-
M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C., (2001). 1.2
-
(2001)
On a Class of Incomplete Gamma Functions with Applications
-
-
Chaudhry, M.A.1
Zubair, S.M.2
-
6
-
-
0031550475
-
Extension of Euler's beta function
-
1.2
-
M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78 (1997), 19-32. 1.2
-
(1997)
J. Comput. Appl. Math
, vol.78
, pp. 19-32
-
-
Chaudhry, M.A.1
Qadir, A.2
Rafique, M.3
Zubair, S.M.4
-
7
-
-
5644282901
-
Extended hypergeometric and confluent hypergeometric functions
-
1.2, 4
-
M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602. 1.2, 4
-
(2004)
Appl. Math. Comput
, vol.159
, pp. 589-602
-
-
Chaudhry, M.A.1
Qadir, A.2
Srivastava, H.M.3
Paris, R.B.4
-
8
-
-
79955811417
-
-
Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C., 5
-
A. A. Kilbas, M. Saigo, H-Transforms: Theory and Applications, Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C., (2004). 5
-
(2004)
H-Transforms: Theory and Applications
-
-
Kilbas, A.A.1
Saigo, M.2
-
9
-
-
77956684069
-
-
in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 1, 5.7
-
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, (2006). 1, 5.7
-
(2006)
Theory and Applications of Fractional Differential Equations
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
11
-
-
79952454978
-
Numerical approaches to fractional calculus and fractional ordinary differential equation
-
1
-
C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Physics, 230 (2011), 3352-3368. 1
-
(2011)
J. Comput. Physics
, vol.230
, pp. 3352-3368
-
-
Li, C.1
Chen, A.2
Ye, J.3
-
12
-
-
84908403212
-
Some results on the extended beta and extended hypergeometric functions
-
1, 1.2, 6
-
M. J. Luo, G. V. Milovanovic, P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., 248 (2014), 631-651. 1, 1.2, 6
-
(2014)
Appl. Math. Comput
, vol.248
, pp. 631-651
-
-
Luo, M.J.1
Milovanovic, G.V.2
Agarwal, P.3
-
13
-
-
77957362117
-
Recent history of fractional calculus
-
1
-
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1140-1153. 1
-
(2011)
Commun. Nonlinear Sci. Numer. Simulat
, vol.16
, pp. 1140-1153
-
-
Machado, J.T.1
Kiryakova, V.2
Mainardi, F.3
-
14
-
-
76449091415
-
Fractional calculus models of complex dynamics in biological tissues
-
1
-
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. 1
-
(2010)
Comput. Math. Appl
, vol.59
, pp. 1586-1593
-
-
Magin, R.L.1
-
15
-
-
84891408876
-
-
Springer, New York, 5
-
A. M. Mathai, R. K. Saxena, H. J. Haubold, The H-function: Theory and applications, Springer, New York, (2010). 5
-
(2010)
The H-function: Theory and applications
-
-
Mathai, A.M.1
Saxena, R.K.2
Haubold, H.J.3
-
16
-
-
0032202832
-
Remarks on a generalized beta function
-
1.2
-
A. R. Miller, Remarks on a generalized beta function, J. Comput. Appl. Math., 100 (1998), 23-32. 1.2
-
(1998)
J. Comput. Appl. Math
, vol.100
, pp. 23-32
-
-
Miller, A.R.1
-
17
-
-
29144460666
-
General differentiation
-
6
-
P. A. Nekrassov, General differentiation, Mat. Sbornik, 14 (1888), 45-168 6
-
(1888)
Mat. Sbornik
, vol.14
, pp. 45-168
-
-
Nekrassov, P.A.1
-
18
-
-
0014782163
-
Leibniz rule for the fractional derivatives and an application to infinite series
-
6.1
-
T. J. Osler, Leibniz rule for the fractional derivatives and an application to infinite series, SIAM J. Appl. Math., 18 (1970), 658-674. 6.1
-
(1970)
SIAM J. Appl. Math
, vol.18
, pp. 658-674
-
-
Osler, T.J.1
-
19
-
-
84937119636
-
-
the chain rule and Taylor's theorem for fractional derivatives, Ph.D. thesis, New York University, 6
-
T. J. Osler, Leibniz rule, the chain rule and Taylor's theorem for fractional derivatives, Ph.D. thesis, New York University, (1970). 6
-
(1970)
Leibniz rule
-
-
Osler, T.J.1
-
20
-
-
77956009547
-
Some generating relations for extended hypergeometric functions via generalized fractional derivative operator
-
1, 3.2, 4, 5.1
-
M. A. Özarslan, E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Model., 52 (2010), 1825-1833. 1, 3.2, 4, 5.1
-
(2010)
Math. Comput. Model
, vol.52
, pp. 1825-1833
-
-
Özarslan, M.A.1
Özergin, E.2
-
21
-
-
79958254898
-
Extension of gamma
-
1.2
-
E. Özergin, M. A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 4601-4610. 1.2
-
(2011)
Beta and hypergeometric functions, J. Comput. Appl. Math
, vol.235
, pp. 4601-4610
-
-
Özergin, E.1
Özarslan, M.A.2
Altin, A.3
-
22
-
-
84907504260
-
Generating functions for the generalized Gauss hypergeometric functions
-
(document), 1, 1
-
H. M. Srivastava, P. Agarwal, S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput., 247 (2014), 348-352. (document), 1, 1
-
(2014)
Appl. Math. Comput
, vol.247
, pp. 348-352
-
-
Srivastava, H.M.1
Agarwal, P.2
Jain, S.3
-
23
-
-
85013938024
-
-
Elsevier Science Publishers, Amsterdam, London and New York, 1.2, 1.3, 1.3, 1, 6.4, 6
-
H. M. Srivastava J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, (2012). 1.2, 1.3, 1.3, 1, 6.4, 6
-
(2012)
Zeta and q-Zeta Functions and Associated Series and Integrals
-
-
Srivastava, H.M.1
Choi, J.2
-
24
-
-
0004162942
-
-
Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 2, 4, 4
-
H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, (1984). 2, 4, 4
-
(1984)
A Treatise on Generating Functions
-
-
Srivastava, H.M.1
Manocha, H.L.2
-
25
-
-
84937128314
-
Positive solutions for a class of q-fractional boundary value problems with p-Laplacian
-
1
-
J. Zhao, Positive solutions for a class of q-fractional boundary value problems with p-Laplacian, J. Nonlinear Sci. Appl., 8 (2015), 442-450. 1
-
(2015)
J. Nonlinear Sci. Appl
, vol.8
, pp. 442-450
-
-
Zhao, J.1
|