-
1
-
-
84975795680
-
An integrated map of genetic variation from 1,092 human genomes
-
The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56-65.
-
(2012)
Nature
, vol.491
, pp. 56-65
-
-
-
2
-
-
84893758536
-
The 1000 bull genomes project
-
Accessed 10 Feb 2015
-
Hayes B, Daetwyler H, Fries R, Stothard P, Pausch H, van Binsbergen R, et al. The 1000 bull genomes project. 2013. http://www.1000bullgenomes.com/doco/hayes_pag_1000bullgenomes_2013.pdf . Accessed 10 Feb 2015.
-
(2013)
-
-
Hayes, B.1
Daetwyler, H.2
Fries, R.3
Stothard, P.4
Pausch, H.5
van Binsbergen, R.6
-
3
-
-
84905483050
-
Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle
-
Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:858-65.
-
(2014)
Nat Genet
, vol.46
, pp. 858-865
-
-
Daetwyler, H.D.1
Capitan, A.2
Pausch, H.3
Stothard, P.4
Binsbergen, R.5
Brøndum, R.F.6
-
4
-
-
84937066533
-
High imputation accuracy in layer chicken from sequence data on a few key ancestors
-
Communication 660 in: Proceedings of the 10th world congress on genetics applied to livestock production. Accessed 11 Feb 2015
-
Heidaritabar M, Calus MPL, Vereijken A, Groenen MAM, Bastiaansen JWM. High imputation accuracy in layer chicken from sequence data on a few key ancestors. Communication 660 in: Proceedings of the 10th world congress on genetics applied to livestock production. 2014. https://asas.org/docs/default-source/wcgalp-posters/660_paper_8829_manuscript_574_0.pdf . Accessed 11 Feb 2015
-
(2014)
-
-
Heidaritabar, M.1
Calus, M.P.L.2
Vereijken, A.3
Groenen, M.A.M.4
Bastiaansen, J.W.M.5
-
5
-
-
84904077192
-
Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle
-
van Binsbergen R, Bink MCAM, Calus MPL, van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46:41.
-
(2014)
Genet Sel Evol
, vol.46
, pp. 41
-
-
Binsbergen, R.1
Bink, M.C.A.M.2
Calus, M.P.L.3
Eeuwijk, F.A.4
Hayes, B.J.5
Hulsegge, I.6
-
6
-
-
35348817330
-
Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
-
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084-97.
-
(2007)
Am J Hum Genet
, vol.81
, pp. 1084-1097
-
-
Browning, S.R.1
Browning, B.L.2
-
7
-
-
84863845193
-
Genotype imputation with thousands of genomes
-
Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011;1:457-70.
-
(2011)
G3
, vol.1
, pp. 457-470
-
-
Howie, B.1
Marchini, J.2
Stephens, M.3
-
8
-
-
84906822558
-
Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle
-
Brøndum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle. BMC Genomics. 2014;15:728.
-
(2014)
BMC Genomics
, vol.15
, pp. 728
-
-
Brøndum, R.F.1
Guldbrandtsen, B.2
Sahana, G.3
Lund, M.S.4
Su, G.5
-
9
-
-
84890312913
-
Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions
-
Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity. 2014;112:39-47.
-
(2014)
Heredity
, vol.112
, pp. 39-47
-
-
Druet, T.1
Macleod, I.M.2
Hayes, B.J.3
-
12
-
-
84902300113
-
A new approach for efficient genotype imputation using information from relatives
-
Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics. 2014;15:478.
-
(2014)
BMC Genomics
, vol.15
, pp. 478
-
-
Sargolzaei, M.1
Chesnais, J.P.2
Schenkel, F.S.3
-
13
-
-
84924040404
-
Rapid calculation of genomic evaluations for new animals
-
Wiggans GR, VanRaden PM, Cooper TA. Rapid calculation of genomic evaluations for new animals. J Dairy Sci 2015;98:2039-42.
-
(2015)
J Dairy Sci
, vol.98
, pp. 2039-2042
-
-
Wiggans, G.R.1
VanRaden, P.M.2
Cooper, T.A.3
-
14
-
-
84871609280
-
Genomic imputation and evaluation using high-density Holstein genotypes
-
VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB, et al. Genomic imputation and evaluation using high-density Holstein genotypes. J Dairy Sci. 2013;96:668-78.
-
(2013)
J Dairy Sci
, vol.96
, pp. 668-678
-
-
VanRaden, P.M.1
Null, D.J.2
Sargolzaei, M.3
Wiggans, G.R.4
Tooker, M.E.5
Cole, J.B.6
-
15
-
-
84937066534
-
Accuracy of whole-genome sequence genotype imputation in cattle breeds
-
Communication 667 in: proceedings of the 10th world congress on genetics applied to livestock production. Accessed 18 Feb 2015
-
Li H, Sargolzaei M, Schenkel F. Accuracy of whole-genome sequence genotype imputation in cattle breeds. Communication 667 in: proceedings of the 10th world congress on genetics applied to livestock production. 2014. https://asas.org/docs/default-source/wcgalp-posters/667_paper_9613_manuscript_1052_0.pdf . Accessed 18 Feb 2015.
-
(2014)
-
-
Li, H.1
Sargolzaei, M.2
Schenkel, F.3
-
16
-
-
84908429193
-
Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants
-
Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. 2014;7:3.
-
(2014)
Plant Genome
, vol.7
, pp. 3
-
-
Swarts, K.1
Li, H.2
Romero Navarro, J.A.3
An, D.4
Romay, M.C.5
Hearne, S.6
-
17
-
-
84901370399
-
A general approach for haplotype phasing across the full spectrum of relatedness
-
O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014;10, e1004234.
-
(2014)
PLoS Genet
, vol.10
-
-
O'Connell, J.1
Gurdasani, D.2
Delaneau, O.3
Pirastu, N.4
Ulivi, S.5
Cocca, M.6
-
18
-
-
58349092764
-
Invited review: reliability of genomic predictions for North American Holstein bulls
-
VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, et al. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92:16-24.
-
(2009)
J Dairy Sci
, vol.92
, pp. 16-24
-
-
VanRaden, P.M.1
Tassell, C.P.2
Wiggans, G.R.3
Sonstegard, T.S.4
Schnabel, R.D.5
Taylor, J.F.6
-
19
-
-
84859575920
-
A common dataset for genomic analysis of livestock populations
-
Cleveland MA, Hickey JM, Forni S. A common dataset for genomic analysis of livestock populations. G3. 2012;2:429-35.
-
(2012)
G3
, vol.2
, pp. 429-435
-
-
Cleveland, M.A.1
Hickey, J.M.2
Forni, S.3
-
20
-
-
77954198372
-
Design of association studies with pooled or un-pooled next-generation sequencing data
-
Kim SY, Li Y, Guo Y, Li R, Holmkvist J, Hansen T, et al. Design of association studies with pooled or un-pooled next-generation sequencing data. Genet Epidemiol. 2010;34:479-91.
-
(2010)
Genet Epidemiol
, vol.34
, pp. 479-491
-
-
Kim, S.Y.1
Li, Y.2
Guo, Y.3
Li, R.4
Holmkvist, J.5
Hansen, T.6
-
21
-
-
79957951017
-
Low-coverage sequencing: implications for design of complex trait association studies
-
Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 2011;21:940-51.
-
(2011)
Genome Res
, vol.21
, pp. 940-951
-
-
Li, Y.1
Sidore, C.2
Kang, H.M.3
Boehnke, M.4
Abecasis, G.R.5
-
22
-
-
84861598099
-
2012. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies
-
Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. 2012. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44:631-6.
-
(2012)
Nat Genet
, vol.44
, pp. 631-636
-
-
Pasaniuc, B.1
Rohland, N.2
McLaren, P.J.3
Garimella, K.4
Zaitlen, N.5
Li, H.6
-
23
-
-
84871952176
-
Improved whole-chromosome phasing for disease and population genetic studies
-
Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Meth. 2013;10:5-6.
-
(2013)
Nat Meth
, vol.10
, pp. 5-6
-
-
Delaneau, O.1
Zagury, J.-F.2
Marchini, J.3
-
24
-
-
84871736050
-
Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold
-
Menelaou A, Marchini J. Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold. Bioinformatics. 2013;29:84-91.
-
(2013)
Bioinformatics
, vol.29
, pp. 84-91
-
-
Menelaou, A.1
Marchini, J.2
-
25
-
-
84877100867
-
An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data
-
Wang Y, Lu J, Yu J, Gibbs RA, Yu F. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. Genome Res. 2013;23:833-42.
-
(2013)
Genome Res
, vol.23
, pp. 833-842
-
-
Wang, Y.1
Lu, J.2
Yu, J.3
Gibbs, R.A.4
Yu, F.5
-
26
-
-
84902504030
-
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
-
Delaneau O, Marchini J, The 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5:3934.
-
(2014)
Nat Commun
, vol.5
, pp. 3934
-
-
Delaneau, O.1
Marchini, J.2
-
27
-
-
79951527739
-
Linkage disequilibrium based genotype calling from low-coverage shotgun sequencing reads
-
Duitama J, Kennedy J, Dinakar S, Hernández Y, Wu Y, Măndoiu II. Linkage disequilibrium based genotype calling from low-coverage shotgun sequencing reads. BMC Bioinformatics. 2011;12 Suppl 1:S53.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. S53
-
-
Duitama, J.1
Kennedy, J.2
Dinakar, S.3
Hernández, Y.4
Wu, Y.5
Măndoiu, I.I.6
-
28
-
-
45749155981
-
Aspects of coverage in medical DNA sequencing
-
Wendl MC, Wilson RK. Aspects of coverage in medical DNA sequencing. BMC Bioinformatics. 2008;9:239.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 239
-
-
Wendl, M.C.1
Wilson, R.K.2
-
29
-
-
84937066535
-
Reveel: large-scale population genotyping using low-coverage sequencing data
-
Huang L, Wang B, Chen R, Bercovici S, Batzoglou S. Reveel: large-scale population genotyping using low-coverage sequencing data. bioRxiv 2014; doi: 10.1101/011882 .
-
(2014)
bioRxiv
-
-
Huang, L.1
Wang, B.2
Chen, R.3
Bercovici, S.4
Batzoglou, S.5
-
30
-
-
84928720700
-
Potential of genotyping-by-sequencing for genomic selection in livestock populations
-
Gorjanc G, Cleveland MA, Houston RD, Hickey JM. Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genet Select Evol. 2015;47:12.
-
(2015)
Genet Select Evol
, vol.47
, pp. 12
-
-
Gorjanc, G.1
Cleveland, M.A.2
Houston, R.D.3
Hickey, J.M.4
-
31
-
-
84937026805
-
findhap.f90, Find haplotypes and impute genotypes using multiple chip sets and sequence data
-
Accessed 24 Feb 2015
-
Van Raden PM. findhap.f90, Find haplotypes and impute genotypes using multiple chip sets and sequence data. 2015. http://aipl.arsusda.gov/software/findhap/ . Accessed 24 Feb 2015.
-
(2015)
-
-
Van Raden, P.M.1
-
32
-
-
84924040404
-
Technical note: rapid calculation of genomic evaluations for new animals
-
Wiggans GR, VanRaden PM, Cooper TA. Technical note: rapid calculation of genomic evaluations for new animals. J Dairy Sci. 2015;98:2039-42.
-
(2015)
J Dairy Sci
, vol.98
, pp. 2039-2042
-
-
Wiggans, G.R.1
VanRaden, P.M.2
Cooper, T.A.3
-
33
-
-
77953808087
-
Genotype imputation for genome-wide association studies
-
Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499-511.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 499-511
-
-
Marchini, J.1
Howie, B.2
-
34
-
-
84865085171
-
Joint genotype calling with array and sequence data
-
O'Connell J, Marchini J. Joint genotype calling with array and sequence data. Genet Epidemiol. 2012;36:527-37.
-
(2012)
Genet Epidemiol
, vol.36
, pp. 527-537
-
-
O'Connell, J.1
Marchini, J.2
-
35
-
-
84914672274
-
Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications
-
Calus MPL, Bouwman AC, Hickey JM, Veerkamp RF, Mulder HA. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Animal. 2014;8:1743-53.
-
(2014)
Animal
, vol.8
, pp. 1743-1753
-
-
Calus, M.P.L.1
Bouwman, A.C.2
Hickey, J.M.3
Veerkamp, R.F.4
Mulder, H.A.5
-
36
-
-
84937032782
-
Genomic evaluation with SNP chip switched
-
Book of Abstracts of the 63rd Annual Meeting of the European Federation of Animal Science. Wageningen, The Netherlands: Wageningen Academic Publishers
-
Alkhoder H, Liu Z, Reinhardt F, Swalve HH, Reents R. Genomic evaluation with SNP chip switched. In: Book of Abstracts of the 63rd Annual Meeting of the European Federation of Animal Science. Wageningen, The Netherlands: Wageningen Academic Publishers; 2012;136.
-
(2012)
, pp. 136
-
-
Alkhoder, H.1
Liu, Z.2
Reinhardt, F.3
Swalve, H.H.4
Reents, R.5
-
37
-
-
84877862924
-
Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing
-
De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE. 2013;8, e62137.
-
(2013)
PLoS ONE
, vol.8
-
-
Donato, M.1
Peters, S.O.2
Mitchell, S.E.3
Hussain, T.4
Imumorin, I.G.5
-
38
-
-
84884714597
-
Sequencing millions of animals for genomic selection 2.0
-
Hickey JM. Sequencing millions of animals for genomic selection 2.0. J Anim Breed Genet. 2013;130:331-2.
-
(2013)
J Anim Breed Genet
, vol.130
, pp. 331-332
-
-
Hickey, J.M.1
|