-
1
-
-
84869091543
-
Endothelial cell heterogeneity
-
Aird, W. C. (2012). Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2, a006429. doi: 10.1101/cshperspect.a006429
-
(2012)
Cold Spring Harb. Perspect. Med
, vol.2
-
-
Aird, W.C.1
-
2
-
-
77955070371
-
Controlling the porosity and microarchitecture of hydrogels for tissue engineering
-
Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371-383. doi:10.1089/ten.TEB.2009.0639
-
(2010)
Tissue Eng. Part B Rev
, vol.16
, pp. 371-383
-
-
Annabi, N.1
Nichol, J.W.2
Zhong, X.3
Ji, C.4
Koshy, S.5
Khademhosseini, A.6
-
3
-
-
84882260099
-
Hydrogel-coated microfluidic channels for cardiomyocyte culture
-
Annabi, N., Selimovic, Š, Acevedo Cox, J. P., Ribas, J., Afshar Bakooshli, M., Heintze, D., et al. (2013). Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab. Chip 13, 3569-3577. doi:10.1039/c3lc50252j
-
(2013)
Lab. Chip
, vol.13
, pp. 3569-3577
-
-
Annabi, N.1
Selimovic Š Acevedo Cox, J.P.2
Ribas, J.3
Afshar Bakooshli, M.4
Heintze, D.5
-
4
-
-
78049327346
-
Size-dependent rheology of type-I collagen networks
-
Arevalo, R. C., Urbach, J. S., and Blair, D. L. (2010). Size-dependent rheology of type-I collagen networks. Biophys. J. 99, L65-L67. doi:10.1016/j.bpj.2010.08.008
-
(2010)
Biophys. J
, vol.99
, pp. L65-L67
-
-
Arevalo, R.C.1
Urbach, J.S.2
Blair, D.L.3
-
5
-
-
77649270111
-
Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering
-
Asakawa, N., Shimizu, T., Tsuda, Y., Sekiya, S., Sasagawa, T., Yamato, M., et al. (2010). Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31, 3903-3909. doi:10.1016/j.biomaterials.2010.01.105
-
(2010)
Biomaterials
, vol.31
, pp. 3903-3909
-
-
Asakawa, N.1
Shimizu, T.2
Tsuda, Y.3
Sekiya, S.4
Sasagawa, T.5
Yamato, M.6
-
6
-
-
77954385915
-
Directed 3D cell alignment and elongation in microengineered hydrogels
-
Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31, 6941-6951. doi:10.1016/j.biomaterials.2010.05.056
-
(2010)
Biomaterials
, vol.31
, pp. 6941-6951
-
-
Aubin, H.1
Nichol, J.W.2
Hutson, C.B.3
Bae, H.4
Sieminski, A.L.5
Cropek, D.M.6
-
7
-
-
84858033844
-
Engineered whole organs and complex tissues
-
Badylak, S. F., Weiss, D. J., Caplan, A., and Macchiarini, P. (2012). Engineered whole organs and complex tissues. Lancet 379, 943-952. doi:10.1016/S0140-6736(12)60073-7
-
(2012)
Lancet
, vol.379
, pp. 943-952
-
-
Badylak, S.F.1
Weiss, D.J.2
Caplan, A.3
Macchiarini, P.4
-
8
-
-
33847019597
-
Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography
-
Bagnaninchi, P. O., Yang, Y., Zghoul, N., Maffulli, N., Wang, R. K., and Haj, A. J. (2007). Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. Tissue Eng. 13, 323-331. doi:10.1089/ten.2006.0168
-
(2007)
Tissue Eng
, vol.13
, pp. 323-331
-
-
Bagnaninchi, P.O.1
Yang, Y.2
Zghoul, N.3
Maffulli, N.4
Wang, R.K.5
Haj, A.J.6
-
9
-
-
84871610364
-
Endothelialization approaches for viable engineered tissues
-
Baiguera, S., and Ribatti, D. (2013). Endothelialization approaches for viable engineered tissues. Angiogenesis 16, 1-14. doi:10.1007/s10456-012-9307-8
-
(2013)
Angiogenesis
, vol.16
, pp. 1-14
-
-
Baiguera, S.1
Ribatti, D.2
-
10
-
-
0035105945
-
Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures
-
Balgude, A. P., Yu, X., Szymanski, A., and Bellamkonda, R. V. (2001). Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22, 1077-1084. doi:10.1016/S0142-9612(00)00350-1
-
(2001)
Biomaterials
, vol.22
, pp. 1077-1084
-
-
Balgude, A.P.1
Yu, X.2
Szymanski, A.3
Bellamkonda, R.V.4
-
11
-
-
72649106327
-
Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
-
Benton, J. A., DeForest, C. A., Vivekanandan, V., and Anseth, K. S. (2009). Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221-3230. doi:10.1089/ten.TEA.2008.0545
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 3221-3230
-
-
Benton, J.A.1
DeForest, C.A.2
Vivekanandan, V.3
Anseth, K.S.4
-
12
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., et al. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14, 2202-2211. doi:10.1039/c4lc00030g
-
(2014)
Lab. Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
-
13
-
-
84905754409
-
Microfluidic organs-on-chips
-
Bhatia, S. N., and Ingber, D. E. (2014). Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760-772. doi:10.1038/nbt.2989
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 760-772
-
-
Bhatia, S.N.1
Ingber, D.E.2
-
14
-
-
84868551375
-
Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels
-
Cuchiara, M. P., Gould, D. J., McHale, M. K., Dickinson, M. E., and West, J. L. (2012). Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv. Funct. Mater. 22, 4511-4518. doi:10.1002/adfm.201200976
-
(2012)
Adv. Funct. Mater
, vol.22
, pp. 4511-4518
-
-
Cuchiara, M.P.1
Gould, D.J.2
McHale, M.K.3
Dickinson, M.E.4
West, J.L.5
-
15
-
-
82055161653
-
Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions
-
DeForest, C., and Anseth, K. (2011). Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925-931. doi:10.1038/nchem.1174
-
(2011)
Nat. Chem
, vol.3
, pp. 925-931
-
-
DeForest, C.1
Anseth, K.2
-
16
-
-
79956065316
-
Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels
-
Du, Y., Ghodousi, M., Qi, H., Haas, N., Xiao, W., and Khademhosseini, A. (2011). Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 108, 1693-1703. doi:10.1002/bit.23102
-
(2011)
Biotechnol. Bioeng
, vol.108
, pp. 1693-1703
-
-
Du, Y.1
Ghodousi, M.2
Qi, H.3
Haas, N.4
Xiao, W.5
Khademhosseini, A.6
-
17
-
-
84864070072
-
Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review
-
Fortelny, R. H., Petter-Puchner, A. H., Glaser, K. S., and Redl, H. (2012). Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review. Surg. Endosc. 26, 1803-1812. doi:10.1007/s00464-012-2156-0
-
(2012)
Surg. Endosc
, vol.26
, pp. 1803-1812
-
-
Fortelny, R.H.1
Petter-Puchner, A.H.2
Glaser, K.S.3
Redl, H.4
-
18
-
-
80053137444
-
Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine
-
Fuchs, S., Dohle, E., Kolbe, M., and Kirkpatrick, C. J. (2010). Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. Adv. Biochem. Eng. Biotechnol. 123, 201-217. doi:10.1007/10_2009_65
-
(2010)
Adv. Biochem. Eng. Biotechnol
, vol.123
, pp. 201-217
-
-
Fuchs, S.1
Dohle, E.2
Kolbe, M.3
Kirkpatrick, C.J.4
-
19
-
-
84862808511
-
Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
-
Gauvin, R., Chen, Y., Lee, J., and Soman, P. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824-3834. doi:10.1016/j.biomaterials.2012.01.048
-
(2012)
Biomaterials
, vol.33
, pp. 3824-3834
-
-
Gauvin, R.1
Chen, Y.2
Lee, J.3
Soman, P.4
-
20
-
-
77951218278
-
Engineering hydrogels as extracellular matrix mimics
-
Geckil, H., Xu, F., Zhang, X., Moon, S., and Demirci, U. (2010). Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond). 5, 469-484. doi:10.2217/nnm.10.12
-
(2010)
Nanomedicine (Lond)
, vol.5
, pp. 469-484
-
-
Geckil, H.1
Xu, F.2
Zhang, X.3
Moon, S.4
Demirci, U.5
-
21
-
-
34249806021
-
Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
-
Golden, A., and Tien, J. (2007). Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 7, 720-725. doi:10.1039/b618409j
-
(2007)
Lab. Chip
, vol.7
, pp. 720-725
-
-
Golden, A.1
Tien, J.2
-
22
-
-
80053297640
-
Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions
-
Gruene, M., Pflaum, M., Hess, C., Diamantouros, S., Schlie, S., Deiwick, A., et al. (2011). Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods 17, 973-982. doi:10.1089/ten.TEC.2011.0185
-
(2011)
Tissue Eng. Part C Methods
, vol.17
, pp. 973-982
-
-
Gruene, M.1
Pflaum, M.2
Hess, C.3
Diamantouros, S.4
Schlie, S.5
Deiwick, A.6
-
23
-
-
84893412812
-
A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering
-
Hammer, J., Han, L., Tong, X., and Yang, F. (2013). A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng. Part C Methods 20, 24-27. doi:10.1089/ten.TEC.2013.0176
-
(2013)
Tissue Eng. Part C Methods
, vol.20
, pp. 24-27
-
-
Hammer, J.1
Han, L.2
Tong, X.3
Yang, F.4
-
24
-
-
33750478307
-
Comparing the rheology of native spider and silkworm spinning dope
-
Holland, C., Terry, A. E., Porter, D., and Vollrath, F. (2006). Comparing the rheology of native spider and silkworm spinning dope. Nat. Mater. 5, 870-874. doi:10.1038/nmat1762
-
(2006)
Nat. Mater
, vol.5
, pp. 870-874
-
-
Holland, C.1
Terry, A.E.2
Porter, D.3
Vollrath, F.4
-
25
-
-
84920989190
-
Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix
-
Holnthoner, W., Hohenegger, K., Husa, A.-M., Muehleder, S., Meinl, A., Peterbauer-Scherb, A., et al. (2012). Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. J. Tissue Eng. Regen. Med. doi:10.1002/term.1620
-
(2012)
J. Tissue Eng. Regen. Med
-
-
Holnthoner, W.1
Hohenegger, K.2
Husa, A.-M.3
Muehleder, S.4
Meinl, A.5
Peterbauer-Scherb, A.6
-
26
-
-
84872672040
-
Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering
-
Huang, G., Wang, S., He, X., Zhang, X., Lu, T. J., and Xu, F. (2013). Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering. Biotechnol. Bioeng. 110, 980-989. doi:10.1002/bit.24764
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 980-989
-
-
Huang, G.1
Wang, S.2
He, X.3
Zhang, X.4
Lu, T.J.5
Xu, F.6
-
27
-
-
84867486363
-
Microfluidic hydrogels for tissue engineering
-
Huang, G. Y., Zhou, L. H., Zhang, Q. C., Chen, Y. M., Sun, W., Xu, F., et al. (2011). Microfluidic hydrogels for tissue engineering. Biofabrication 3, 012001. doi:10.1088/1758-5082/3/1/012001
-
(2011)
Biofabrication
, vol.3
-
-
Huang, G.Y.1
Zhou, L.H.2
Zhang, Q.C.3
Chen, Y.M.4
Sun, W.5
Xu, F.6
-
28
-
-
84899533846
-
Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels
-
Kageyama, T., Kakegawa, T., Osaki, T., Enomoto, J., Ito, T., Nittami, T., et al. (2014). Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels. Biofabrication 6, 25006. doi:10.1088/1758-5082/6/2/025006
-
(2014)
Biofabrication
, vol.6
, pp. 25006
-
-
Kageyama, T.1
Kakegawa, T.2
Osaki, T.3
Enomoto, J.4
Ito, T.5
Nittami, T.6
-
29
-
-
84876704168
-
Engineering of functional, perfusable 3D microvascular networks on a chip
-
Kim, S., Lee, H., Chung, M., and Jeon, N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. Lab. Chip 13, 1489-1500. doi:10.1039/c3lc41320a
-
(2013)
Lab. Chip
, vol.13
, pp. 1489-1500
-
-
Kim, S.1
Lee, H.2
Chung, M.3
Jeon, N.L.4
-
30
-
-
79957747188
-
Co-culture systems for vascularization-learning from nature
-
Kirkpatrick, C. J., Fuchs, S., and Unger, R. E. (2011). Co-culture systems for vascularization-learning from nature. Adv. Drug Deliv. Rev. 63, 291-299. doi:10.1016/j.addr.2011.01.009
-
(2011)
Adv. Drug Deliv. Rev
, vol.63
, pp. 291-299
-
-
Kirkpatrick, C.J.1
Fuchs, S.2
Unger, R.E.3
-
31
-
-
84872743043
-
Hydrogels in healthcare: from static to dynamic material microenvironments
-
Kirschner, C. M., and Anseth, K. S. (2013). Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931-944. doi:10.1016/j.actamat.2012.10.037
-
(2013)
Acta Mater
, vol.61
, pp. 931-944
-
-
Kirschner, C.M.1
Anseth, K.S.2
-
32
-
-
34548078418
-
Engineering thick tissues-the vascularisation problem
-
Ko, H. C. H., Milthorpe, B. K., and McFarland, C. D. (2007). Engineering thick tissues-the vascularisation problem. Eur. Cell. Mater. 14, 1-18.
-
(2007)
Eur. Cell. Mater
, vol.14
, pp. 1-18
-
-
Ko, H.C.H.1
Milthorpe, B.K.2
McFarland, C.D.3
-
33
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., and Lewis, J. A. (2014). 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124-3130. doi:10.1002/adma.201305506
-
(2014)
Adv. Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
34
-
-
42749097087
-
Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration
-
Lee, S.-H., Moon, J. J., and West, J. L. (2008). Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962-2968. doi:10.1016/j.biomaterials.2008.04.004
-
(2008)
Biomaterials
, vol.29
, pp. 2962-2968
-
-
Lee, S.-H.1
Moon, J.J.2
West, J.L.3
-
35
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
Lee, V. K., Kim, D. Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., et al. (2014). Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092-8102. doi:10.1016/j.biomaterials.2014.05.083
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
Kim, D.Y.2
Ngo, H.3
Lee, Y.4
Seo, L.5
Yoo, S.-S.6
-
36
-
-
77951604536
-
On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
-
Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J.-H., Fischer, K., et al. (2010). On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105, 1178-1186. doi:10.1002/bit.22613
-
(2010)
Biotechnol. Bioeng
, vol.105
, pp. 1178-1186
-
-
Lee, W.1
Lee, V.2
Polio, S.3
Keegan, P.4
Lee, J.-H.5
Fischer, K.6
-
37
-
-
24944477341
-
Engineering vascularized skeletal muscle tissue
-
Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nat. Biotech. 23, 879-884. doi:10.1038/nbt1109
-
(2005)
Nat. Biotech
, vol.23
, pp. 879-884
-
-
Levenberg, S.1
Rouwkema, J.2
Macdonald, M.3
Garfein, E.S.4
Kohane, D.S.5
Darland, D.C.6
-
38
-
-
34249794264
-
A cell-laden microfluidic hydrogel
-
Ling, Y., Rubin, J., Deng, Y., Huang, C., Demirci, U., Karp, J. M., et al. (2007). A cell-laden microfluidic hydrogel. Lab. Chip 7, 756-762. doi:10.1039/b615486g
-
(2007)
Lab. Chip
, vol.7
, pp. 756-762
-
-
Ling, Y.1
Rubin, J.2
Deng, Y.3
Huang, C.4
Demirci, U.5
Karp, J.M.6
-
39
-
-
1842731242
-
A photolabile hydrogel for guided three-dimensional cell growth and migration
-
Luo, Y., and Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249-253. doi:10.1038/nmat1092
-
(2004)
Nat. Mater
, vol.3
, pp. 249-253
-
-
Luo, Y.1
Shoichet, M.S.2
-
40
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H.T., Cohen, D. M., et al. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768-774. doi:10.1038/nmat3357
-
(2012)
Nat. Mater
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
-
41
-
-
26844534722
-
Multiple-channel scaffolds to promote spinal cord axon regeneration
-
Moore, M. J., Friedman, J. A., Lewellyn, E. B., Mantila, S. M., Krych, A. J., Ameenuddin, S., et al. (2006). Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27, 419-429. doi:10.1016/j.biomaterials.2005.07.045
-
(2006)
Biomaterials
, vol.27
, pp. 419-429
-
-
Moore, M.J.1
Friedman, J.A.2
Lewellyn, E.B.3
Mantila, S.M.4
Krych, A.J.5
Ameenuddin, S.6
-
42
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy, S. V., and Atala, A. (2014). 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773-785. doi:10.1038/nbt.2958
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
44
-
-
33847289806
-
Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers
-
Nazhat, S. N., Neel, E. A. A., Kidane, A., Ahmed, I., Hope, C., Kershaw, M., et al. (2007). Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8, 543-551. doi:10.1021/bm060715f
-
(2007)
Biomacromolecules
, vol.8
, pp. 543-551
-
-
Nazhat, S.N.1
Neel, E.A.A.2
Kidane, A.3
Ahmed, I.4
Hope, C.5
Kershaw, M.6
-
45
-
-
84856140933
-
Biomaterials for the development of peripheral nerve
-
Nectow, A. R., Marra, K. G., and Kaplan, D. L. (2012). Biomaterials for the development of peripheral nerve. Tissue Eng. Part B Rev. 18, 40-50. doi:10.1089/ten.teb.2011.0240
-
(2012)
Tissue Eng. Part B Rev
, vol.18
, pp. 40-50
-
-
Nectow, A.R.1
Marra, K.G.2
Kaplan, D.L.3
-
46
-
-
0035892432
-
Soft contact lens polymers: an evolution
-
Nicolson, P. C., and Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials 22, 3273-3283. doi:10.1016/S0142-9612(01)00165-X
-
(2001)
Biomaterials
, vol.22
, pp. 3273-3283
-
-
Nicolson, P.C.1
Vogt, J.2
-
47
-
-
40749130909
-
Microstructures in 3D biological gels affect cell proliferation
-
Norman, J. J., Collins, J. M., Sharma, S., Russell, B., and Desai, T. A. (2007). Microstructures in 3D biological gels affect cell proliferation. Tissue Eng. Part A 14, 379-390. doi:10.1089/tea.2007.0077
-
(2007)
Tissue Eng. Part A
, vol.14
, pp. 379-390
-
-
Norman, J.J.1
Collins, J.M.2
Sharma, S.3
Russell, B.4
Desai, T.A.5
-
48
-
-
79957713859
-
Vascularization is the key challenge in tissue engineering
-
Novosel, E., Kleinhans, C., and Kluger, P. (2011). Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300-311. doi:10.1016/j.addr.2011.03.004
-
(2011)
Adv. Drug Deliv. Rev
, vol.63
, pp. 300-311
-
-
Novosel, E.1
Kleinhans, C.2
Kluger, P.3
-
49
-
-
84871394054
-
Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications
-
Ovsianikov, A., Mironov, V., Stampfl, J., and Liska, R. (2012). Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev. Med. Devices 9, 613-633. doi:10.1586/erd.12.48
-
(2012)
Expert Rev. Med. Devices
, vol.9
, pp. 613-633
-
-
Ovsianikov, A.1
Mironov, V.2
Stampfl, J.3
Liska, R.4
-
50
-
-
84898006915
-
Laser photofabrication of cell-containing hydrogel constructs
-
Ovsianikov, A., Mühleder, S., Torgersen, J., Li, Z., Qin, X.-H., Van Vlierberghe, S., et al. (2014). Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30, 3787-3794. doi:10.1021/la402346z
-
(2014)
Langmuir
, vol.30
, pp. 3787-3794
-
-
Ovsianikov, A.1
Mühleder, S.2
Torgersen, J.3
Li, Z.4
Qin, X.-H.5
Van Vlierberghe, S.6
-
51
-
-
20444461710
-
Blood vessels engineered from human cells
-
Poh, M., Boyer, M., Solan, A., and Dahl, S. (2005). Blood vessels engineered from human cells. Lancet 365, 2122-2124. doi:10.1016/S0140-6736(05)66735-9
-
(2005)
Lancet
, vol.365
, pp. 2122-2124
-
-
Poh, M.1
Boyer, M.2
Solan, A.3
Dahl, S.4
-
52
-
-
77954469767
-
Geometrically controlled endothelial tubulogenesis in micropatterned gels
-
Raghavan, S., Nelson, C. M., Baranski, J. D., Lim, E., and Chen, C. S. (2010). Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. Part A 16, 2255-2263. doi:10.1089/ten.TEA.2009.0584
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 2255-2263
-
-
Raghavan, S.1
Nelson, C.M.2
Baranski, J.D.3
Lim, E.4
Chen, C.S.5
-
53
-
-
69249203626
-
Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo
-
Reinisch, A., Hofmann, N. A., Obenauf, A. C., Kashofer, K., Rohde, E., Schallmoser, K., et al. (2009). Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 113, 6716-6725. doi:10.1182/blood-2008-09-181362
-
(2009)
Blood
, vol.113
, pp. 6716-6725
-
-
Reinisch, A.1
Hofmann, N.A.2
Obenauf, A.C.3
Kashofer, K.4
Rohde, E.5
Schallmoser, K.6
-
54
-
-
84898890837
-
Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs
-
Rnjak-Kovacina, J., Wray, L. S., Golinski, J. M., and Kaplan, D. L. (2013). Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs. Adv. Funct. Mater. 24, 2188-2196. doi:10.1016/j.biomaterials.2012.09.017
-
(2013)
Adv. Funct. Mater
, vol.24
, pp. 2188-2196
-
-
Rnjak-Kovacina, J.1
Wray, L.S.2
Golinski, J.M.3
Kaplan, D.L.4
-
55
-
-
84907591211
-
Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells
-
Rohringer, S., Hofbauer, P., Schneider, K. H., Husa, A.-M., Feichtinger, G., Peterbauer-Scherb, A., et al. (2014). Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 17, 921-933. doi:10.1007/s10456-014-9439-0
-
(2014)
Angiogenesis
, vol.17
, pp. 921-933
-
-
Rohringer, S.1
Hofbauer, P.2
Schneider, K.H.3
Husa, A.-M.4
Feichtinger, G.5
Peterbauer-Scherb, A.6
-
56
-
-
47049097487
-
Vascularization in tissue engineering
-
Rouwkema, J., Rivron, N. C., and van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends Biotechnol. 26, 434-441. doi:10.1016/j.tibtech.2008.04.009
-
(2008)
Trends Biotechnol
, vol.26
, pp. 434-441
-
-
Rouwkema, J.1
Rivron, N.C.2
van Blitterswijk, C.A.3
-
57
-
-
0344306399
-
Performance of degradable composite bone repair products made via three-dimensional fabrication techniques
-
Roy, T. D., Simon, J. L., Ricci, J. L., Rekow, E. D., Thompson, V. P., and Parsons, J. R. (2003). Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J. Biomed. Mater. Res. A 66, 283-291. doi:10.1002/jbm.a.10582
-
(2003)
J. Biomed. Mater. Res. A
, vol.66
, pp. 283-291
-
-
Roy, T.D.1
Simon, J.L.2
Ricci, J.L.3
Rekow, E.D.4
Thompson, V.P.5
Parsons, J.R.6
-
58
-
-
0032729622
-
Structural origins of fibrin clot rheology
-
Ryan, E. A., Mockros, L. F., Weisel, J. W., and Lorand, L. (1999). Structural origins of fibrin clot rheology. Biophys. J. 77, 2813-2826. doi:10.1016/S0006-3495(99)77113-4
-
(1999)
Biophys. J
, vol.77
, pp. 2813-2826
-
-
Ryan, E.A.1
Mockros, L.F.2
Weisel, J.W.3
Lorand, L.4
-
59
-
-
80051549035
-
SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures
-
Sadr, N., Zhu, M., Osaki, T., Kakegawa, T., Yang, Y., Moretti, M., et al. (2011). SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32, 7479-7490. doi:10.1016/j.biomaterials.2011.06.034
-
(2011)
Biomaterials
, vol.32
, pp. 7479-7490
-
-
Sadr, N.1
Zhu, M.2
Osaki, T.3
Kakegawa, T.4
Yang, Y.5
Moretti, M.6
-
60
-
-
84874323190
-
In vitro engineering of vascularized tissue surrogates
-
Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., et al. (2013). In vitro engineering of vascularized tissue surrogates. Sci. Rep. 3, 1316. doi:10.1038/srep01316
-
(2013)
Sci. Rep
, vol.3
, pp. 1316
-
-
Sakaguchi, K.1
Shimizu, T.2
Horaguchi, S.3
Sekine, H.4
Yamato, M.5
Umezu, M.6
-
61
-
-
68949114132
-
Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions
-
Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., and Seliktar, D. (2009). Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743-4752. doi:10.1016/j.bpj.2009.03.019
-
(2009)
Biophys. J
, vol.96
, pp. 4743-4752
-
-
Sarig-Nadir, O.1
Livnat, N.2
Zajdman, R.3
Shoham, S.4
Seliktar, D.5
-
62
-
-
84896332509
-
Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation
-
Schmocker, A., Khoushabi, A., Schizas, C., Bourban, P.-E., Pioletti, D. P., and Moser, C. (2014). Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation. J. Biomed. Opt. 19, 35004. doi:10.1117/1.JBO.19.3.035004
-
(2014)
J. Biomed. Opt
, vol.19
, pp. 35004
-
-
Schmocker, A.1
Khoushabi, A.2
Schizas, C.3
Bourban, P.-E.4
Pioletti, D.P.5
Moser, C.6
-
63
-
-
84861714640
-
Designing cell-compatible hydrogels for biomedical applications
-
Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124-1128. doi:10.1126/science.1214804
-
(2012)
Science
, vol.336
, pp. 1124-1128
-
-
Seliktar, D.1
-
64
-
-
9144257910
-
Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
-
Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., et al. (2004). Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices 6, 269-278. doi:10.1023/B:BMMD.0000048559.29932.27
-
(2004)
Biomed. Microdevices
, vol.6
, pp. 269-278
-
-
Shin, M.1
Matsuda, K.2
Ishii, O.3
Terai, H.4
Kaazempur-Mofrad, M.5
Borenstein, J.6
-
65
-
-
84896544149
-
Stereolithography in tissue engineering
-
Skoog, S. A., Goering, P. L., and Narayan, R. J. (2013). Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25, 845-856.
-
(2013)
J. Mater. Sci. Mater. Med
, vol.25
, pp. 845-856
-
-
Skoog, S.A.1
Goering, P.L.2
Narayan, R.J.3
-
66
-
-
84871382127
-
Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms
-
Torgersen, J., Ovsianikov, A., Mironov, V., Pucher, N., Qin, X., Li, Z., et al. (2012). Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17, 105008. doi:10.1117/1.JBO.17.10.105008
-
(2012)
J. Biomed. Opt
, vol.17
-
-
Torgersen, J.1
Ovsianikov, A.2
Mironov, V.3
Pucher, N.4
Qin, X.5
Li, Z.6
-
67
-
-
84894178377
-
In vitro perfusion of engineered heart tissue through endothelialized channels
-
Vollert, I., Seiffert, M., Bachmair, J., Sander, M., Eder, A., Conradi, L., et al. (2014). In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng. Part A 20, 854-863. doi:10.1089/ten.TEA.2013.0214
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 854-863
-
-
Vollert, I.1
Seiffert, M.2
Bachmair, J.3
Sander, M.4
Eder, A.5
Conradi, L.6
-
68
-
-
84903758320
-
Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template
-
Wang, X.-Y., Jin, Z.-H., Gan, B.-W., Lv, S.-W., Xie, M., and Huang, W.-H. (2014). Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab. Chip 14, 2709-2716. doi:10.1039/c4lc00069b
-
(2014)
Lab. Chip
, vol.14
, pp. 2709-2716
-
-
Wang, X.-Y.1
Jin, Z.-H.2
Gan, B.-W.3
Lv, S.-W.4
Xie, M.5
Huang, W.-H.6
-
69
-
-
34547773120
-
Physical properties of alginate hydrogels and their effects on in vitro follicle development
-
West, E. R., Xu, M., Woodruff, T. K., and Shea, L. D. (2007). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28, 4439-4448. doi:10.1016/j.biomaterials.2007.07.001
-
(2007)
Biomaterials
, vol.28
, pp. 4439-4448
-
-
West, E.R.1
Xu, M.2
Woodruff, T.K.3
Shea, L.D.4
-
70
-
-
84879506896
-
Artificial lymphatic drainage systems for vascularized microfluidic scaffolds
-
Wong, K. H. K., Truslow, J. G., Khankhel, A. H., Chan, K. L. S., and Tien, J. (2013). Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A 101, 2181-2190. doi:10.1002/jbm.a.34524
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 2181-2190
-
-
Wong, K.H.K.1
Truslow, J.G.2
Khankhel, A.H.3
Chan, K.L.S.4
Tien, J.5
-
71
-
-
84867403318
-
A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs
-
Wray, L. S., Rnjak-Kovacina, J., Mandal, B. B., Schmidt, D. F., Gil, E. S., and Kaplan, D. L. (2012). A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials 33, 9214-9224. doi:10.1016/j.biomaterials.2012.09.017
-
(2012)
Biomaterials
, vol.33
, pp. 9214-9224
-
-
Wray, L.S.1
Rnjak-Kovacina, J.2
Mandal, B.B.3
Schmidt, D.F.4
Gil, E.S.5
Kaplan, D.L.6
-
72
-
-
80053052185
-
Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels
-
Wylie, R. G., Ahsan, S., Aizawa, Y., Maxwell, K. L., Morshead, C. M., and Shoichet, M. S. (2011). Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799-806. doi:10.1038/nmat3101
-
(2011)
Nat. Mater
, vol.10
, pp. 799-806
-
-
Wylie, R.G.1
Ahsan, S.2
Aizawa, Y.3
Maxwell, K.L.4
Morshead, C.M.5
Shoichet, M.S.6
-
73
-
-
84898677725
-
Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal
-
Xing, Q., Yates, K., Vogt, C., Qian, Z., Frost, M. C., and Zhao, F. (2014). Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep. 4, 4706. doi:10.1038/srep04706
-
(2014)
Sci. Rep
, vol.4
, pp. 4706
-
-
Xing, Q.1
Yates, K.2
Vogt, C.3
Qian, Z.4
Frost, M.C.5
Zhao, F.6
-
74
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
Zheng, Y., Chen, J., Craven, M., Choi, N. W., Totorica, S., Diaz-Santana, A., et al. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9342-9347. doi:10.1073/pnas.1201240109
-
(2012)
Proc. Natl. Acad. Sci. U. S. A
, vol.109
, pp. 9342-9347
-
-
Zheng, Y.1
Chen, J.2
Craven, M.3
Choi, N.W.4
Totorica, S.5
Diaz-Santana, A.6
|