메뉴 건너뛰기




Volumn 2, Issue NOV, 2014, Pages

Connections matter: Channeled hydrogels to improve vascularization

Author keywords

Channel; Endothelial cells; Hydrogel; Tissue engineering; Vascularization

Indexed keywords

CELL DEATH; CELLS; CYTOLOGY; ENDOTHELIAL CELLS; HYDROGELS; OXYGEN SUPPLY; TISSUE; TISSUE ENGINEERING;

EID: 84936992349     PISSN: None     EISSN: 22964185     Source Type: Journal    
DOI: 10.3389/fbioe.2014.00052     Document Type: Short Survey
Times cited : (33)

References (74)
  • 1
    • 84869091543 scopus 로고    scopus 로고
    • Endothelial cell heterogeneity
    • Aird, W. C. (2012). Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2, a006429. doi: 10.1101/cshperspect.a006429
    • (2012) Cold Spring Harb. Perspect. Med , vol.2
    • Aird, W.C.1
  • 2
    • 77955070371 scopus 로고    scopus 로고
    • Controlling the porosity and microarchitecture of hydrogels for tissue engineering
    • Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371-383. doi:10.1089/ten.TEB.2009.0639
    • (2010) Tissue Eng. Part B Rev , vol.16 , pp. 371-383
    • Annabi, N.1    Nichol, J.W.2    Zhong, X.3    Ji, C.4    Koshy, S.5    Khademhosseini, A.6
  • 4
    • 78049327346 scopus 로고    scopus 로고
    • Size-dependent rheology of type-I collagen networks
    • Arevalo, R. C., Urbach, J. S., and Blair, D. L. (2010). Size-dependent rheology of type-I collagen networks. Biophys. J. 99, L65-L67. doi:10.1016/j.bpj.2010.08.008
    • (2010) Biophys. J , vol.99 , pp. L65-L67
    • Arevalo, R.C.1    Urbach, J.S.2    Blair, D.L.3
  • 5
    • 77649270111 scopus 로고    scopus 로고
    • Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering
    • Asakawa, N., Shimizu, T., Tsuda, Y., Sekiya, S., Sasagawa, T., Yamato, M., et al. (2010). Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31, 3903-3909. doi:10.1016/j.biomaterials.2010.01.105
    • (2010) Biomaterials , vol.31 , pp. 3903-3909
    • Asakawa, N.1    Shimizu, T.2    Tsuda, Y.3    Sekiya, S.4    Sasagawa, T.5    Yamato, M.6
  • 6
    • 77954385915 scopus 로고    scopus 로고
    • Directed 3D cell alignment and elongation in microengineered hydrogels
    • Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31, 6941-6951. doi:10.1016/j.biomaterials.2010.05.056
    • (2010) Biomaterials , vol.31 , pp. 6941-6951
    • Aubin, H.1    Nichol, J.W.2    Hutson, C.B.3    Bae, H.4    Sieminski, A.L.5    Cropek, D.M.6
  • 7
    • 84858033844 scopus 로고    scopus 로고
    • Engineered whole organs and complex tissues
    • Badylak, S. F., Weiss, D. J., Caplan, A., and Macchiarini, P. (2012). Engineered whole organs and complex tissues. Lancet 379, 943-952. doi:10.1016/S0140-6736(12)60073-7
    • (2012) Lancet , vol.379 , pp. 943-952
    • Badylak, S.F.1    Weiss, D.J.2    Caplan, A.3    Macchiarini, P.4
  • 8
    • 33847019597 scopus 로고    scopus 로고
    • Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography
    • Bagnaninchi, P. O., Yang, Y., Zghoul, N., Maffulli, N., Wang, R. K., and Haj, A. J. (2007). Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. Tissue Eng. 13, 323-331. doi:10.1089/ten.2006.0168
    • (2007) Tissue Eng , vol.13 , pp. 323-331
    • Bagnaninchi, P.O.1    Yang, Y.2    Zghoul, N.3    Maffulli, N.4    Wang, R.K.5    Haj, A.J.6
  • 9
    • 84871610364 scopus 로고    scopus 로고
    • Endothelialization approaches for viable engineered tissues
    • Baiguera, S., and Ribatti, D. (2013). Endothelialization approaches for viable engineered tissues. Angiogenesis 16, 1-14. doi:10.1007/s10456-012-9307-8
    • (2013) Angiogenesis , vol.16 , pp. 1-14
    • Baiguera, S.1    Ribatti, D.2
  • 10
    • 0035105945 scopus 로고    scopus 로고
    • Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures
    • Balgude, A. P., Yu, X., Szymanski, A., and Bellamkonda, R. V. (2001). Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22, 1077-1084. doi:10.1016/S0142-9612(00)00350-1
    • (2001) Biomaterials , vol.22 , pp. 1077-1084
    • Balgude, A.P.1    Yu, X.2    Szymanski, A.3    Bellamkonda, R.V.4
  • 11
    • 72649106327 scopus 로고    scopus 로고
    • Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
    • Benton, J. A., DeForest, C. A., Vivekanandan, V., and Anseth, K. S. (2009). Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221-3230. doi:10.1089/ten.TEA.2008.0545
    • (2009) Tissue Eng. Part A , vol.15 , pp. 3221-3230
    • Benton, J.A.1    DeForest, C.A.2    Vivekanandan, V.3    Anseth, K.S.4
  • 12
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., et al. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14, 2202-2211. doi:10.1039/c4lc00030g
    • (2014) Lab. Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1    Cecconi, M.2    Manoharan, V.3    Nikkhah, M.4    Hjortnaes, J.5    Cristino, A.L.6
  • 13
    • 84905754409 scopus 로고    scopus 로고
    • Microfluidic organs-on-chips
    • Bhatia, S. N., and Ingber, D. E. (2014). Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760-772. doi:10.1038/nbt.2989
    • (2014) Nat. Biotechnol , vol.32 , pp. 760-772
    • Bhatia, S.N.1    Ingber, D.E.2
  • 14
    • 84868551375 scopus 로고    scopus 로고
    • Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels
    • Cuchiara, M. P., Gould, D. J., McHale, M. K., Dickinson, M. E., and West, J. L. (2012). Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv. Funct. Mater. 22, 4511-4518. doi:10.1002/adfm.201200976
    • (2012) Adv. Funct. Mater , vol.22 , pp. 4511-4518
    • Cuchiara, M.P.1    Gould, D.J.2    McHale, M.K.3    Dickinson, M.E.4    West, J.L.5
  • 15
    • 82055161653 scopus 로고    scopus 로고
    • Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions
    • DeForest, C., and Anseth, K. (2011). Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925-931. doi:10.1038/nchem.1174
    • (2011) Nat. Chem , vol.3 , pp. 925-931
    • DeForest, C.1    Anseth, K.2
  • 16
    • 79956065316 scopus 로고    scopus 로고
    • Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels
    • Du, Y., Ghodousi, M., Qi, H., Haas, N., Xiao, W., and Khademhosseini, A. (2011). Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 108, 1693-1703. doi:10.1002/bit.23102
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 1693-1703
    • Du, Y.1    Ghodousi, M.2    Qi, H.3    Haas, N.4    Xiao, W.5    Khademhosseini, A.6
  • 17
    • 84864070072 scopus 로고    scopus 로고
    • Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review
    • Fortelny, R. H., Petter-Puchner, A. H., Glaser, K. S., and Redl, H. (2012). Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review. Surg. Endosc. 26, 1803-1812. doi:10.1007/s00464-012-2156-0
    • (2012) Surg. Endosc , vol.26 , pp. 1803-1812
    • Fortelny, R.H.1    Petter-Puchner, A.H.2    Glaser, K.S.3    Redl, H.4
  • 18
    • 80053137444 scopus 로고    scopus 로고
    • Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine
    • Fuchs, S., Dohle, E., Kolbe, M., and Kirkpatrick, C. J. (2010). Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. Adv. Biochem. Eng. Biotechnol. 123, 201-217. doi:10.1007/10_2009_65
    • (2010) Adv. Biochem. Eng. Biotechnol , vol.123 , pp. 201-217
    • Fuchs, S.1    Dohle, E.2    Kolbe, M.3    Kirkpatrick, C.J.4
  • 19
    • 84862808511 scopus 로고    scopus 로고
    • Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
    • Gauvin, R., Chen, Y., Lee, J., and Soman, P. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824-3834. doi:10.1016/j.biomaterials.2012.01.048
    • (2012) Biomaterials , vol.33 , pp. 3824-3834
    • Gauvin, R.1    Chen, Y.2    Lee, J.3    Soman, P.4
  • 20
    • 77951218278 scopus 로고    scopus 로고
    • Engineering hydrogels as extracellular matrix mimics
    • Geckil, H., Xu, F., Zhang, X., Moon, S., and Demirci, U. (2010). Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond). 5, 469-484. doi:10.2217/nnm.10.12
    • (2010) Nanomedicine (Lond) , vol.5 , pp. 469-484
    • Geckil, H.1    Xu, F.2    Zhang, X.3    Moon, S.4    Demirci, U.5
  • 21
    • 34249806021 scopus 로고    scopus 로고
    • Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
    • Golden, A., and Tien, J. (2007). Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 7, 720-725. doi:10.1039/b618409j
    • (2007) Lab. Chip , vol.7 , pp. 720-725
    • Golden, A.1    Tien, J.2
  • 22
    • 80053297640 scopus 로고    scopus 로고
    • Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions
    • Gruene, M., Pflaum, M., Hess, C., Diamantouros, S., Schlie, S., Deiwick, A., et al. (2011). Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods 17, 973-982. doi:10.1089/ten.TEC.2011.0185
    • (2011) Tissue Eng. Part C Methods , vol.17 , pp. 973-982
    • Gruene, M.1    Pflaum, M.2    Hess, C.3    Diamantouros, S.4    Schlie, S.5    Deiwick, A.6
  • 23
    • 84893412812 scopus 로고    scopus 로고
    • A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering
    • Hammer, J., Han, L., Tong, X., and Yang, F. (2013). A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng. Part C Methods 20, 24-27. doi:10.1089/ten.TEC.2013.0176
    • (2013) Tissue Eng. Part C Methods , vol.20 , pp. 24-27
    • Hammer, J.1    Han, L.2    Tong, X.3    Yang, F.4
  • 24
    • 33750478307 scopus 로고    scopus 로고
    • Comparing the rheology of native spider and silkworm spinning dope
    • Holland, C., Terry, A. E., Porter, D., and Vollrath, F. (2006). Comparing the rheology of native spider and silkworm spinning dope. Nat. Mater. 5, 870-874. doi:10.1038/nmat1762
    • (2006) Nat. Mater , vol.5 , pp. 870-874
    • Holland, C.1    Terry, A.E.2    Porter, D.3    Vollrath, F.4
  • 26
    • 84872672040 scopus 로고    scopus 로고
    • Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering
    • Huang, G., Wang, S., He, X., Zhang, X., Lu, T. J., and Xu, F. (2013). Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering. Biotechnol. Bioeng. 110, 980-989. doi:10.1002/bit.24764
    • (2013) Biotechnol. Bioeng , vol.110 , pp. 980-989
    • Huang, G.1    Wang, S.2    He, X.3    Zhang, X.4    Lu, T.J.5    Xu, F.6
  • 28
    • 84899533846 scopus 로고    scopus 로고
    • Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels
    • Kageyama, T., Kakegawa, T., Osaki, T., Enomoto, J., Ito, T., Nittami, T., et al. (2014). Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels. Biofabrication 6, 25006. doi:10.1088/1758-5082/6/2/025006
    • (2014) Biofabrication , vol.6 , pp. 25006
    • Kageyama, T.1    Kakegawa, T.2    Osaki, T.3    Enomoto, J.4    Ito, T.5    Nittami, T.6
  • 29
    • 84876704168 scopus 로고    scopus 로고
    • Engineering of functional, perfusable 3D microvascular networks on a chip
    • Kim, S., Lee, H., Chung, M., and Jeon, N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. Lab. Chip 13, 1489-1500. doi:10.1039/c3lc41320a
    • (2013) Lab. Chip , vol.13 , pp. 1489-1500
    • Kim, S.1    Lee, H.2    Chung, M.3    Jeon, N.L.4
  • 30
    • 79957747188 scopus 로고    scopus 로고
    • Co-culture systems for vascularization-learning from nature
    • Kirkpatrick, C. J., Fuchs, S., and Unger, R. E. (2011). Co-culture systems for vascularization-learning from nature. Adv. Drug Deliv. Rev. 63, 291-299. doi:10.1016/j.addr.2011.01.009
    • (2011) Adv. Drug Deliv. Rev , vol.63 , pp. 291-299
    • Kirkpatrick, C.J.1    Fuchs, S.2    Unger, R.E.3
  • 31
    • 84872743043 scopus 로고    scopus 로고
    • Hydrogels in healthcare: from static to dynamic material microenvironments
    • Kirschner, C. M., and Anseth, K. S. (2013). Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931-944. doi:10.1016/j.actamat.2012.10.037
    • (2013) Acta Mater , vol.61 , pp. 931-944
    • Kirschner, C.M.1    Anseth, K.S.2
  • 32
    • 34548078418 scopus 로고    scopus 로고
    • Engineering thick tissues-the vascularisation problem
    • Ko, H. C. H., Milthorpe, B. K., and McFarland, C. D. (2007). Engineering thick tissues-the vascularisation problem. Eur. Cell. Mater. 14, 1-18.
    • (2007) Eur. Cell. Mater , vol.14 , pp. 1-18
    • Ko, H.C.H.1    Milthorpe, B.K.2    McFarland, C.D.3
  • 33
    • 84900988712 scopus 로고    scopus 로고
    • 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., and Lewis, J. A. (2014). 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124-3130. doi:10.1002/adma.201305506
    • (2014) Adv. Mater , vol.26 , pp. 3124-3130
    • Kolesky, D.B.1    Truby, R.L.2    Gladman, A.S.3    Busbee, T.A.4    Homan, K.A.5    Lewis, J.A.6
  • 34
    • 42749097087 scopus 로고    scopus 로고
    • Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration
    • Lee, S.-H., Moon, J. J., and West, J. L. (2008). Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962-2968. doi:10.1016/j.biomaterials.2008.04.004
    • (2008) Biomaterials , vol.29 , pp. 2962-2968
    • Lee, S.-H.1    Moon, J.J.2    West, J.L.3
  • 35
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3D bio-printing technology
    • Lee, V. K., Kim, D. Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., et al. (2014). Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092-8102. doi:10.1016/j.biomaterials.2014.05.083
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1    Kim, D.Y.2    Ngo, H.3    Lee, Y.4    Seo, L.5    Yoo, S.-S.6
  • 36
    • 77951604536 scopus 로고    scopus 로고
    • On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
    • Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J.-H., Fischer, K., et al. (2010). On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105, 1178-1186. doi:10.1002/bit.22613
    • (2010) Biotechnol. Bioeng , vol.105 , pp. 1178-1186
    • Lee, W.1    Lee, V.2    Polio, S.3    Keegan, P.4    Lee, J.-H.5    Fischer, K.6
  • 39
    • 1842731242 scopus 로고    scopus 로고
    • A photolabile hydrogel for guided three-dimensional cell growth and migration
    • Luo, Y., and Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249-253. doi:10.1038/nmat1092
    • (2004) Nat. Mater , vol.3 , pp. 249-253
    • Luo, Y.1    Shoichet, M.S.2
  • 40
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H.T., Cohen, D. M., et al. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768-774. doi:10.1038/nmat3357
    • (2012) Nat. Mater , vol.11 , pp. 768-774
    • Miller, J.S.1    Stevens, K.R.2    Yang, M.T.3    Baker, B.M.4    Nguyen, D.-H.T.5    Cohen, D.M.6
  • 41
    • 26844534722 scopus 로고    scopus 로고
    • Multiple-channel scaffolds to promote spinal cord axon regeneration
    • Moore, M. J., Friedman, J. A., Lewellyn, E. B., Mantila, S. M., Krych, A. J., Ameenuddin, S., et al. (2006). Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27, 419-429. doi:10.1016/j.biomaterials.2005.07.045
    • (2006) Biomaterials , vol.27 , pp. 419-429
    • Moore, M.J.1    Friedman, J.A.2    Lewellyn, E.B.3    Mantila, S.M.4    Krych, A.J.5    Ameenuddin, S.6
  • 42
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy, S. V., and Atala, A. (2014). 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773-785. doi:10.1038/nbt.2958
    • (2014) Nat. Biotechnol , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 44
    • 33847289806 scopus 로고    scopus 로고
    • Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers
    • Nazhat, S. N., Neel, E. A. A., Kidane, A., Ahmed, I., Hope, C., Kershaw, M., et al. (2007). Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8, 543-551. doi:10.1021/bm060715f
    • (2007) Biomacromolecules , vol.8 , pp. 543-551
    • Nazhat, S.N.1    Neel, E.A.A.2    Kidane, A.3    Ahmed, I.4    Hope, C.5    Kershaw, M.6
  • 45
    • 84856140933 scopus 로고    scopus 로고
    • Biomaterials for the development of peripheral nerve
    • Nectow, A. R., Marra, K. G., and Kaplan, D. L. (2012). Biomaterials for the development of peripheral nerve. Tissue Eng. Part B Rev. 18, 40-50. doi:10.1089/ten.teb.2011.0240
    • (2012) Tissue Eng. Part B Rev , vol.18 , pp. 40-50
    • Nectow, A.R.1    Marra, K.G.2    Kaplan, D.L.3
  • 46
    • 0035892432 scopus 로고    scopus 로고
    • Soft contact lens polymers: an evolution
    • Nicolson, P. C., and Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials 22, 3273-3283. doi:10.1016/S0142-9612(01)00165-X
    • (2001) Biomaterials , vol.22 , pp. 3273-3283
    • Nicolson, P.C.1    Vogt, J.2
  • 47
    • 40749130909 scopus 로고    scopus 로고
    • Microstructures in 3D biological gels affect cell proliferation
    • Norman, J. J., Collins, J. M., Sharma, S., Russell, B., and Desai, T. A. (2007). Microstructures in 3D biological gels affect cell proliferation. Tissue Eng. Part A 14, 379-390. doi:10.1089/tea.2007.0077
    • (2007) Tissue Eng. Part A , vol.14 , pp. 379-390
    • Norman, J.J.1    Collins, J.M.2    Sharma, S.3    Russell, B.4    Desai, T.A.5
  • 48
    • 79957713859 scopus 로고    scopus 로고
    • Vascularization is the key challenge in tissue engineering
    • Novosel, E., Kleinhans, C., and Kluger, P. (2011). Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300-311. doi:10.1016/j.addr.2011.03.004
    • (2011) Adv. Drug Deliv. Rev , vol.63 , pp. 300-311
    • Novosel, E.1    Kleinhans, C.2    Kluger, P.3
  • 49
    • 84871394054 scopus 로고    scopus 로고
    • Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications
    • Ovsianikov, A., Mironov, V., Stampfl, J., and Liska, R. (2012). Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev. Med. Devices 9, 613-633. doi:10.1586/erd.12.48
    • (2012) Expert Rev. Med. Devices , vol.9 , pp. 613-633
    • Ovsianikov, A.1    Mironov, V.2    Stampfl, J.3    Liska, R.4
  • 51
    • 20444461710 scopus 로고    scopus 로고
    • Blood vessels engineered from human cells
    • Poh, M., Boyer, M., Solan, A., and Dahl, S. (2005). Blood vessels engineered from human cells. Lancet 365, 2122-2124. doi:10.1016/S0140-6736(05)66735-9
    • (2005) Lancet , vol.365 , pp. 2122-2124
    • Poh, M.1    Boyer, M.2    Solan, A.3    Dahl, S.4
  • 52
    • 77954469767 scopus 로고    scopus 로고
    • Geometrically controlled endothelial tubulogenesis in micropatterned gels
    • Raghavan, S., Nelson, C. M., Baranski, J. D., Lim, E., and Chen, C. S. (2010). Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. Part A 16, 2255-2263. doi:10.1089/ten.TEA.2009.0584
    • (2010) Tissue Eng. Part A , vol.16 , pp. 2255-2263
    • Raghavan, S.1    Nelson, C.M.2    Baranski, J.D.3    Lim, E.4    Chen, C.S.5
  • 53
    • 69249203626 scopus 로고    scopus 로고
    • Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo
    • Reinisch, A., Hofmann, N. A., Obenauf, A. C., Kashofer, K., Rohde, E., Schallmoser, K., et al. (2009). Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 113, 6716-6725. doi:10.1182/blood-2008-09-181362
    • (2009) Blood , vol.113 , pp. 6716-6725
    • Reinisch, A.1    Hofmann, N.A.2    Obenauf, A.C.3    Kashofer, K.4    Rohde, E.5    Schallmoser, K.6
  • 54
    • 84898890837 scopus 로고    scopus 로고
    • Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs
    • Rnjak-Kovacina, J., Wray, L. S., Golinski, J. M., and Kaplan, D. L. (2013). Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs. Adv. Funct. Mater. 24, 2188-2196. doi:10.1016/j.biomaterials.2012.09.017
    • (2013) Adv. Funct. Mater , vol.24 , pp. 2188-2196
    • Rnjak-Kovacina, J.1    Wray, L.S.2    Golinski, J.M.3    Kaplan, D.L.4
  • 55
    • 84907591211 scopus 로고    scopus 로고
    • Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells
    • Rohringer, S., Hofbauer, P., Schneider, K. H., Husa, A.-M., Feichtinger, G., Peterbauer-Scherb, A., et al. (2014). Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 17, 921-933. doi:10.1007/s10456-014-9439-0
    • (2014) Angiogenesis , vol.17 , pp. 921-933
    • Rohringer, S.1    Hofbauer, P.2    Schneider, K.H.3    Husa, A.-M.4    Feichtinger, G.5    Peterbauer-Scherb, A.6
  • 56
  • 57
    • 0344306399 scopus 로고    scopus 로고
    • Performance of degradable composite bone repair products made via three-dimensional fabrication techniques
    • Roy, T. D., Simon, J. L., Ricci, J. L., Rekow, E. D., Thompson, V. P., and Parsons, J. R. (2003). Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J. Biomed. Mater. Res. A 66, 283-291. doi:10.1002/jbm.a.10582
    • (2003) J. Biomed. Mater. Res. A , vol.66 , pp. 283-291
    • Roy, T.D.1    Simon, J.L.2    Ricci, J.L.3    Rekow, E.D.4    Thompson, V.P.5    Parsons, J.R.6
  • 58
    • 0032729622 scopus 로고    scopus 로고
    • Structural origins of fibrin clot rheology
    • Ryan, E. A., Mockros, L. F., Weisel, J. W., and Lorand, L. (1999). Structural origins of fibrin clot rheology. Biophys. J. 77, 2813-2826. doi:10.1016/S0006-3495(99)77113-4
    • (1999) Biophys. J , vol.77 , pp. 2813-2826
    • Ryan, E.A.1    Mockros, L.F.2    Weisel, J.W.3    Lorand, L.4
  • 59
    • 80051549035 scopus 로고    scopus 로고
    • SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures
    • Sadr, N., Zhu, M., Osaki, T., Kakegawa, T., Yang, Y., Moretti, M., et al. (2011). SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32, 7479-7490. doi:10.1016/j.biomaterials.2011.06.034
    • (2011) Biomaterials , vol.32 , pp. 7479-7490
    • Sadr, N.1    Zhu, M.2    Osaki, T.3    Kakegawa, T.4    Yang, Y.5    Moretti, M.6
  • 61
    • 68949114132 scopus 로고    scopus 로고
    • Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions
    • Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., and Seliktar, D. (2009). Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743-4752. doi:10.1016/j.bpj.2009.03.019
    • (2009) Biophys. J , vol.96 , pp. 4743-4752
    • Sarig-Nadir, O.1    Livnat, N.2    Zajdman, R.3    Shoham, S.4    Seliktar, D.5
  • 62
    • 84896332509 scopus 로고    scopus 로고
    • Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation
    • Schmocker, A., Khoushabi, A., Schizas, C., Bourban, P.-E., Pioletti, D. P., and Moser, C. (2014). Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation. J. Biomed. Opt. 19, 35004. doi:10.1117/1.JBO.19.3.035004
    • (2014) J. Biomed. Opt , vol.19 , pp. 35004
    • Schmocker, A.1    Khoushabi, A.2    Schizas, C.3    Bourban, P.-E.4    Pioletti, D.P.5    Moser, C.6
  • 63
    • 84861714640 scopus 로고    scopus 로고
    • Designing cell-compatible hydrogels for biomedical applications
    • Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124-1128. doi:10.1126/science.1214804
    • (2012) Science , vol.336 , pp. 1124-1128
    • Seliktar, D.1
  • 64
    • 9144257910 scopus 로고    scopus 로고
    • Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
    • Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., et al. (2004). Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices 6, 269-278. doi:10.1023/B:BMMD.0000048559.29932.27
    • (2004) Biomed. Microdevices , vol.6 , pp. 269-278
    • Shin, M.1    Matsuda, K.2    Ishii, O.3    Terai, H.4    Kaazempur-Mofrad, M.5    Borenstein, J.6
  • 66
    • 84871382127 scopus 로고    scopus 로고
    • Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms
    • Torgersen, J., Ovsianikov, A., Mironov, V., Pucher, N., Qin, X., Li, Z., et al. (2012). Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17, 105008. doi:10.1117/1.JBO.17.10.105008
    • (2012) J. Biomed. Opt , vol.17
    • Torgersen, J.1    Ovsianikov, A.2    Mironov, V.3    Pucher, N.4    Qin, X.5    Li, Z.6
  • 67
    • 84894178377 scopus 로고    scopus 로고
    • In vitro perfusion of engineered heart tissue through endothelialized channels
    • Vollert, I., Seiffert, M., Bachmair, J., Sander, M., Eder, A., Conradi, L., et al. (2014). In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng. Part A 20, 854-863. doi:10.1089/ten.TEA.2013.0214
    • (2014) Tissue Eng. Part A , vol.20 , pp. 854-863
    • Vollert, I.1    Seiffert, M.2    Bachmair, J.3    Sander, M.4    Eder, A.5    Conradi, L.6
  • 68
    • 84903758320 scopus 로고    scopus 로고
    • Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template
    • Wang, X.-Y., Jin, Z.-H., Gan, B.-W., Lv, S.-W., Xie, M., and Huang, W.-H. (2014). Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab. Chip 14, 2709-2716. doi:10.1039/c4lc00069b
    • (2014) Lab. Chip , vol.14 , pp. 2709-2716
    • Wang, X.-Y.1    Jin, Z.-H.2    Gan, B.-W.3    Lv, S.-W.4    Xie, M.5    Huang, W.-H.6
  • 69
    • 34547773120 scopus 로고    scopus 로고
    • Physical properties of alginate hydrogels and their effects on in vitro follicle development
    • West, E. R., Xu, M., Woodruff, T. K., and Shea, L. D. (2007). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28, 4439-4448. doi:10.1016/j.biomaterials.2007.07.001
    • (2007) Biomaterials , vol.28 , pp. 4439-4448
    • West, E.R.1    Xu, M.2    Woodruff, T.K.3    Shea, L.D.4
  • 70
    • 84879506896 scopus 로고    scopus 로고
    • Artificial lymphatic drainage systems for vascularized microfluidic scaffolds
    • Wong, K. H. K., Truslow, J. G., Khankhel, A. H., Chan, K. L. S., and Tien, J. (2013). Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A 101, 2181-2190. doi:10.1002/jbm.a.34524
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 2181-2190
    • Wong, K.H.K.1    Truslow, J.G.2    Khankhel, A.H.3    Chan, K.L.S.4    Tien, J.5
  • 71
    • 84867403318 scopus 로고    scopus 로고
    • A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs
    • Wray, L. S., Rnjak-Kovacina, J., Mandal, B. B., Schmidt, D. F., Gil, E. S., and Kaplan, D. L. (2012). A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials 33, 9214-9224. doi:10.1016/j.biomaterials.2012.09.017
    • (2012) Biomaterials , vol.33 , pp. 9214-9224
    • Wray, L.S.1    Rnjak-Kovacina, J.2    Mandal, B.B.3    Schmidt, D.F.4    Gil, E.S.5    Kaplan, D.L.6
  • 72
    • 80053052185 scopus 로고    scopus 로고
    • Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels
    • Wylie, R. G., Ahsan, S., Aizawa, Y., Maxwell, K. L., Morshead, C. M., and Shoichet, M. S. (2011). Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799-806. doi:10.1038/nmat3101
    • (2011) Nat. Mater , vol.10 , pp. 799-806
    • Wylie, R.G.1    Ahsan, S.2    Aizawa, Y.3    Maxwell, K.L.4    Morshead, C.M.5    Shoichet, M.S.6
  • 73
    • 84898677725 scopus 로고    scopus 로고
    • Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal
    • Xing, Q., Yates, K., Vogt, C., Qian, Z., Frost, M. C., and Zhao, F. (2014). Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep. 4, 4706. doi:10.1038/srep04706
    • (2014) Sci. Rep , vol.4 , pp. 4706
    • Xing, Q.1    Yates, K.2    Vogt, C.3    Qian, Z.4    Frost, M.C.5    Zhao, F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.