메뉴 건너뛰기




Volumn 2015, Issue , 2015, Pages

Quasilinear extreme learning machine model based internal model control for nonlinear process

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INVERSE PROBLEMS; ITERATIVE METHODS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MODEL PREDICTIVE CONTROL; NUMERICAL METHODS;

EID: 84935844539     PISSN: 1024123X     EISSN: 15635147     Source Type: Journal    
DOI: 10.1155/2015/181389     Document Type: Article
Times cited : (2)

References (33)
  • 1
    • 13644265158 scopus 로고    scopus 로고
    • A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems
    • H. Deng and H.-X. Li, "A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems", IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 35, no. 1, pp. 115-123, 2005.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics , vol.35 , Issue.1 , pp. 115-123
    • Deng, H.1    Li, H.-X.2
  • 2
    • 84903544341 scopus 로고    scopus 로고
    • Research of smart car's speed control based on the internalmodel control
    • H. Yu, H. R. Karimi, and X. Zhu, "Research of smart car's speed control based on the internalmodel control", Abstract and Applied Analysis, vol. 2014, Article ID 274293, 5 pages, 2014.
    • (2014) Abstract and Applied Analysis , vol.2014
    • Yu, H.1    Karimi, H.R.2    Zhu, X.3
  • 3
    • 0033640645 scopus 로고    scopus 로고
    • Nonlinear internal model control using neural networks: Application to processes with delay and design issues
    • I. Rivals and L. Personnaz, "Nonlinear internal model control using neural networks: application to processes with delay and design issues", IEEE Transactions onNeuralNetworks, vol. 11, no. 1, pp. 80-90, 2000.
    • (2000) IEEE Transactions onNeuralNetworks , vol.11 , Issue.1 , pp. 80-90
    • Rivals, I.1    Personnaz, L.2
  • 4
    • 40749135026 scopus 로고    scopus 로고
    • SVM approximate-based internal model control strategy
    • Y.-N. Wang and X.-F. Yuan, "SVM approximate-based internal model control strategy", Acta Automatica Sinica, vol. 34, no. 2, pp. 172-179, 2008.
    • (2008) Acta Automatica Sinica , vol.34 , Issue.2 , pp. 172-179
    • Wang, Y.-N.1    Yuan, X.-F.2
  • 5
    • 0033640645 scopus 로고    scopus 로고
    • Nonlinear internal model control using neural networks: Application to processes with delay and design issues
    • I. Rivals and L. Personnaz, "Nonlinear internal model control using neural networks: application to processes with delay and design issues", IEEE Transactions onNeuralNetworks, vol. 11, no. 1, pp. 80-90, 2000.
    • (2000) IEEE Transactions onNeuralNetworks , vol.11 , Issue.1 , pp. 80-90
    • Rivals, I.1    Personnaz, L.2
  • 6
    • 33646520545 scopus 로고    scopus 로고
    • An approximate internal model-based neural control for unknown nonlinear discrete processes
    • H.-X. Li and H. Deng, "An approximate internal model-based neural control for unknown nonlinear discrete processes", IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 659-670, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 659-670
    • Li, H.-X.1    Deng, H.2
  • 8
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: theory and applications", Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine", Neurocomputing, vol. 70, no. 16-18, pp. 3056-3062, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 10
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Enhanced random search based incremental extreme learning machine", Neurocomputing, vol. 71, no. 16-18, pp. 3460-3468, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 84877842720 scopus 로고    scopus 로고
    • Automatic recognition of epileptic EEG patterns via Extreme Learning Machine and multiresolution feature extraction
    • Y. Song and J. Zhang, "Automatic recognition of epileptic EEG patterns via Extreme Learning Machine and multiresolution feature extraction", Expert SystemswithApplications, vol. 40, no. 14, pp. 5477-5489, 2013.
    • (2013) Expert SystemswithApplications , vol.40 , Issue.14 , pp. 5477-5489
    • Song, Y.1    Zhang, J.2
  • 12
    • 84865739581 scopus 로고    scopus 로고
    • Extreme learning machine-based device displacement free activity recognition model
    • Y. Chen, Z. Zhao, S. Wang, and Z. Chen, "Extreme learning machine-based device displacement free activity recognition model", Soft Computing, vol. 16, no. 9, pp. 1617-1625, 2012.
    • (2012) Soft Computing , vol.16 , Issue.9 , pp. 1617-1625
    • Chen, Y.1    Zhao, Z.2    Wang, S.3    Chen, Z.4
  • 14
    • 84893049069 scopus 로고    scopus 로고
    • Real-time fault diagnosis for gas turbine generator systems using extreme learningmachine
    • P. K. Wong, Z. Yang, C. M. Vong, and J. Zhong, "Real-time fault diagnosis for gas turbine generator systems using extreme learningmachine", Neurocomputing, vol. 128, pp. 249-257, 2014.
    • (2014) Neurocomputing , vol.128 , pp. 249-257
    • Wong, P.K.1    Yang, Z.2    Vong, C.M.3    Zhong, J.4
  • 15
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the Extreme Learning Machine
    • G. Wang, Y. Zhao, and D. Wang, "A protein secondary structure prediction framework based on the Extreme Learning Machine", Neurocomputing, vol. 72, no. 1-3, pp. 262-268, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 262-268
    • Wang, G.1    Zhao, Y.2    Wang, D.3
  • 17
    • 84912098851 scopus 로고    scopus 로고
    • Resolving power of algorithm for solving the coefficient inverse problem for the geoelectric equation
    • K. T. Iskakov and Z. O. Oralbekova, "Resolving power of algorithm for solving the coefficient inverse problem for the geoelectric equation", Mathematical Problems in Engineering, vol. 2014, Article ID545689, 9 pages, 2014.
    • (2014) Mathematical Problems in Engineering , vol.2014 , pp. 9
    • Iskakov, K.T.1    Oralbekova, Z.O.2
  • 18
    • 80053915462 scopus 로고    scopus 로고
    • Identification of uncertain MIMO Wiener and Hammersteinmodels
    • S. I. Biagiola and J. L. Figueroa, "Identification of uncertain MIMO Wiener and Hammersteinmodels", Computers & Chemical Engineering, vol. 35, no. 12, pp. 2867-2875, 2011.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.12 , pp. 2867-2875
    • Biagiola, S.I.1    Figueroa, J.L.2
  • 19
    • 84897029535 scopus 로고    scopus 로고
    • Identification of nonlinear system using extreme learning machine based Hammerstein model
    • Y. Tang, Z. Li, and X. Guan, "Identification of nonlinear system using extreme learning machine based Hammerstein model", Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 3171-3183, 2014.
    • (2014) Communications in Nonlinear Science and Numerical Simulation , vol.19 , Issue.9 , pp. 3171-3183
    • Tang, Y.1    Li, Z.2    Guan, X.3
  • 20
    • 84871271512 scopus 로고    scopus 로고
    • Identification of Hammerstein-Wiener models
    • A. Wills, T. B. Schön, L. Ljung, and B. Ninness, "Identification of Hammerstein-Wiener models", Automatica, vol. 49, no. 1, pp. 70-81, 2013.
    • (2013) Automatica , vol.49 , Issue.1 , pp. 70-81
    • Wills, A.1    Schön, T.B.2    Ljung, L.3    Ninness, B.4
  • 21
    • 55649109065 scopus 로고    scopus 로고
    • Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems
    • D. Wang and F. Ding, "Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems", Computers and Mathematics with Applications, vol. 56, no. 12, pp. 3157-3164, 2008.
    • (2008) Computers and Mathematics with Applications , vol.56 , Issue.12 , pp. 3157-3164
    • Wang, D.1    Ding, F.2
  • 22
    • 33947177631 scopus 로고    scopus 로고
    • Modeling of pH process using wavenet based Hammerstein model
    • J. G. Smith, S. Kamat, and K. P. Madhavan, "Modeling of pH process using wavenet based Hammerstein model", Journal of Process Control, vol. 17, no. 6, pp. 551-561, 2007.
    • (2007) Journal of Process Control , vol.17 , Issue.6 , pp. 551-561
    • Smith, J.G.1    Kamat, S.2    Madhavan, K.P.3
  • 23
    • 84877834689 scopus 로고    scopus 로고
    • Gradient-based iterative identification for MISO Wiener nonlinear systems: Application to a glutamate fermentation process
    • L. Zhou, X. Li, and F. Pan, "Gradient-based iterative identification for MISO Wiener nonlinear systems: application to a glutamate fermentation process", Applied Mathematics Letters, vol. 26, no. 8, pp. 886-892, 2013.
    • (2013) Applied Mathematics Letters , vol.26 , Issue.8 , pp. 886-892
    • Zhou, L.1    Li, X.2    Pan, F.3
  • 24
    • 0032123629 scopus 로고    scopus 로고
    • A hybrid linear/nonlinear training algorithm for feedforward neural networks
    • S. McLoone, M. D. Brown, G. Irwin, and G. Lightbody, "A hybrid linear/nonlinear training algorithm for feedforward neural networks", IEEE Transactions on Neural Networks, vol. 9, no. 4, pp. 669-684, 1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.4 , pp. 669-684
    • McLoone, S.1    Brown, M.D.2    Irwin, G.3    Lightbody, G.4
  • 25
    • 0037359808 scopus 로고    scopus 로고
    • Aparameter optimization method for radial basis function type models
    • H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, "Aparameter optimization method for radial basis function type models", IEEE Transactions on Neural Networks, vol. 14, no. 2, pp. 432-438, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.2 , pp. 432-438
    • Peng, H.1    Ozaki, T.2    Haggan-Ozaki, V.3    Toyoda, Y.4
  • 26
    • 0347270155 scopus 로고    scopus 로고
    • RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process
    • H. Peng, T. Ozaki, Y. Toyoda et al., "RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process", Control Engineering Practice, vol. 12, no. 2, pp. 191-203, 2004.
    • (2004) Control Engineering Practice , vol.12 , Issue.2 , pp. 191-203
    • Peng, H.1    Ozaki, T.2    Toyoda, Y.3
  • 27
    • 84655163146 scopus 로고    scopus 로고
    • Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model
    • B. Hu, Z. Zhao, and J. Liang, "Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model", Journal of Process Control, vol. 22, no. 1, pp. 207-217, 2012.
    • (2012) Journal of Process Control , vol.22 , Issue.1 , pp. 207-217
    • Hu, B.1    Zhao, Z.2    Liang, J.3
  • 30
    • 0032182666 scopus 로고    scopus 로고
    • A local model networks based multivariable long-range predictive control strategy for thermal power plants
    • G. Prasad, E. Swidenbank, and B. W. Hogg, "A local model networks based multivariable long-range predictive control strategy for thermal power plants", Automatica, vol. 34, no. 10, pp. 1185-1204, 1998.
    • (1998) Automatica , vol.34 , Issue.10 , pp. 1185-1204
    • Prasad, G.1    Swidenbank, E.2    Hogg, B.W.3
  • 32
    • 0032592825 scopus 로고    scopus 로고
    • Intelligent process control using neural fuzzy techniques
    • C.-T. Chen and S.-T. Peng, "Intelligent process control using neural fuzzy techniques", Journal of Process Control, vol. 9, no. 6, pp. 493-503, 1999.
    • (1999) Journal of Process Control , vol.9 , Issue.6 , pp. 493-503
    • Chen, C.-T.1    Peng, S.-T.2
  • 33
    • 0033117272 scopus 로고    scopus 로고
    • Learning control of process systems with hard input constraints
    • C.-T. Chen and S.-T. Peng, "Learning control of process systems with hard input constraints", Journal of Process Control, vol. 9, no. 2, pp. 151-160, 1999.
    • (1999) Journal of Process Control , vol.9 , Issue.2 , pp. 151-160
    • Chen, C.-T.1    Peng, S.-T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.