메뉴 건너뛰기




Volumn 34, Issue 19, 2015, Pages 2695-2707

Detecting outlying trials in network meta-analysis

Author keywords

Detection measures; Network meta analysis; Trial level outliers

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; CALCULATION; DATA ANALYSIS; DIABETES MELLITUS; NETWORK META ANALYSIS; NORMAL DISTRIBUTION; PREDICTION; PROBABILITY; SIMULATION; STANDARDIZATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; STUDY DESIGN; CLINICAL TRIAL (TOPIC); HUMAN; META ANALYSIS (TOPIC); PROCEDURES; STATISTICAL BIAS; STATISTICS AND NUMERICAL DATA;

EID: 84935585285     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6509     Document Type: Article
Times cited : (35)

References (36)
  • 1
    • 5044221416 scopus 로고    scopus 로고
    • Combination of direct and indirect evidence in mixed treatment comparisons
    • Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine 2004; 23(20):3105-3124.
    • (2004) Statistics in Medicine , vol.23 , Issue.20 , pp. 3105-3124
    • Lu, G.1    Ades, A.E.2
  • 2
    • 33745663057 scopus 로고    scopus 로고
    • Assessing evidence inconsistency in mixed treatment comparisons
    • Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. JASA 2006; 101(474):447-459.
    • (2006) JASA , vol.101 , Issue.474 , pp. 447-459
    • Lu, G.1    Ades, A.E.2
  • 4
    • 74349083543 scopus 로고    scopus 로고
    • Modeling between-trial variance structure in mixed treatment comparisons
    • Lu G, Ades AE. Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 2009; 10(4):792-805.
    • (2009) Biostatistics , vol.10 , Issue.4 , pp. 792-805
    • Lu, G.1    Ades, A.E.2
  • 5
    • 84935591349 scopus 로고    scopus 로고
    • A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons
    • Research-Report 2012-018, Division of Biostatisitcs, University of Minnesota, Submitted to Research Synthesis Methods
    • Hong H, Chu H, Zhang J, Carlin BP. A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Research-Report 2012-018, Division of Biostatisitcs, University of Minnesota, Submitted to Research Synthesis Methods, 2014.
    • (2014)
    • Hong, H.1    Chu, H.2    Zhang, J.3    Carlin, B.P.4
  • 7
    • 84935608909 scopus 로고    scopus 로고
    • Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness
    • Research Report 2013-018, Division of Biostatistics, University of Minnesota.
    • Zhang J, Chu H, Hong H, Neaton JD, Virnig BA, Carlin BP, Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. Research Report 2013-018, Division of Biostatistics, University of Minnesota.
    • Zhang, J.1    Chu, H.2    Hong, H.3    Neaton, J.D.4    Virnig, B.A.5    Carlin, B.P.6
  • 9
    • 84871663863 scopus 로고    scopus 로고
    • Linear inference for mixed treatment comparison meta-analysis: a two-stage approach
    • Lu G, Welton NJ, Higgins J, White IR, Ades AE. Linear inference for mixed treatment comparison meta-analysis: a two-stage approach. Research Synthesis Methods 2011; 2(1):43-60.
    • (2011) Research Synthesis Methods , vol.2 , Issue.1 , pp. 43-60
    • Lu, G.1    Welton, N.J.2    Higgins, J.3    White, I.R.4    Ades, A.E.5
  • 10
    • 84871665175 scopus 로고    scopus 로고
    • The use of two-way linear mixed models in multitreatment meta-analysis
    • Piepho HP, Williams ER, Madden LV. The use of two-way linear mixed models in multitreatment meta-analysis. Biometrics 2012; 68(4):1269-1277.
    • (2012) Biometrics , vol.68 , Issue.4 , pp. 1269-1277
    • Piepho, H.P.1    Williams, E.R.2    Madden, L.V.3
  • 11
    • 84905565481 scopus 로고    scopus 로고
    • A design-by-treatment interaction model for network meta-analysis with random inconsistency effects
    • Jackson D, Barrett JK, Rice S, White IR, Higgins JPT. A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Statistics in Medicine 2014; 33(21):3639-3654.
    • (2014) Statistics in Medicine , vol.33 , Issue.21 , pp. 3639-3654
    • Jackson, D.1    Barrett, J.K.2    Rice, S.3    White, I.R.4    Higgins, J.P.T.5
  • 12
    • 84875612338 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression
    • White IR, Barrett JK, Jackson D, Higgins J. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 2012; 3(2):111-125.
    • (2012) Research Synthesis Methods , vol.3 , Issue.2 , pp. 111-125
    • White, I.R.1    Barrett, J.K.2    Jackson, D.3    Higgins, J.4
  • 15
    • 79952453322 scopus 로고    scopus 로고
    • Outlier and influence diagnostics for meta-analysis
    • Viechtbauer W, Cheung MWL. Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods 2010; 1(2):112-125.
    • (2010) Research Synthesis Methods , vol.1 , Issue.2 , pp. 112-125
    • Viechtbauer, W.1    Cheung, M.W.L.2
  • 18
    • 84927571238 scopus 로고    scopus 로고
    • Package 'netmeta': network meta-analysis with R
    • R package version 0.4-2
    • Rücker G, Schwarzer G, Krahn U. Package 'netmeta': network meta-analysis with R. R package version 0.4-2, 2014.
    • (2014)
    • Rücker, G.1    Schwarzer, G.2    Krahn, U.3
  • 20
    • 84879096038 scopus 로고    scopus 로고
    • Bayesian indirect and mixed treatment comparisons across longitudinal time points
    • Ding Y, Fu H. Bayesian indirect and mixed treatment comparisons across longitudinal time points. Statistics in Medicine 2012; 32(15):2613-2628.
    • (2012) Statistics in Medicine , vol.32 , Issue.15 , pp. 2613-2628
    • Ding, Y.1    Fu, H.2
  • 21
    • 84870014622 scopus 로고    scopus 로고
    • Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: methods for the absolute risk difference and relative risk
    • Chu H, Nie L, Chen Y, Huang Y, Sun W. Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: methods for the absolute risk difference and relative risk. Statistical Methods in Medical Research 2012; 21(6):621-633.
    • (2012) Statistical Methods in Medical Research , vol.21 , Issue.6 , pp. 621-633
    • Chu, H.1    Nie, L.2    Chen, Y.3    Huang, Y.4    Sun, W.5
  • 22
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • Rubin DB. Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics 1984; 12(4):1151-1172.
    • (1984) The Annals of Statistics , vol.12 , Issue.4 , pp. 1151-1172
    • Rubin, D.B.1
  • 24
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies (with discussion)
    • Gelman A, Meng XL, Stern HS. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 1996; 6(4):733-807.
    • (1996) Statistica Sinica , vol.6 , Issue.4 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.S.3
  • 26
    • 80052708232 scopus 로고    scopus 로고
    • Consistency between direct and indirect trial evidence: is direct evidence always more reliable?
    • Madan J, Stevenson MD, Cooper KL, Ades AE, Whyte S, Akehurst R. Consistency between direct and indirect trial evidence: is direct evidence always more reliable?Value in Health 2011; 14(6):953-960.
    • (2011) Value in Health , vol.14 , Issue.6 , pp. 953-960
    • Madan, J.1    Stevenson, M.D.2    Cooper, K.L.3    Ades, A.E.4    Whyte, S.5    Akehurst, R.6
  • 27
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • Marshall EC, Spiegelhalter DJ. Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine 2003; 22(10):1649-1660.
    • (2003) Statistics in Medicine , vol.22 , Issue.10 , pp. 1649-1660
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 29
    • 0031408971 scopus 로고    scopus 로고
    • Method guidelines for systematic reviews in the Cochrane collaboration back review group for spinal disorders
    • van Tulder MW, Assendelft WJJ, Koes BW, Bouter LM. Method guidelines for systematic reviews in the Cochrane collaboration back review group for spinal disorders. Spine 1997; 22(20):2323-2330.
    • (1997) Spine , vol.22 , Issue.20 , pp. 2323-2330
    • van Tulder, M.W.1    Assendelft, W.J.J.2    Koes, B.W.3    Bouter, L.M.4
  • 32
    • 77949420042 scopus 로고    scopus 로고
    • Checking consistency in mixed treatment comparison meta-analysis
    • Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine 2010; 29(7-8):932-944.
    • (2010) Statistics in Medicine , vol.29 , Issue.7-8 , pp. 932-944
    • Dias, S.1    Welton, N.J.2    Caldwell, D.M.3    Ades, A.E.4
  • 33
    • 0002083004 scopus 로고    scopus 로고
    • Power prior distributions for regression models
    • Ibrahim JG, Chen MH. Power prior distributions for regression models. Statistical Science 2000; 15(1):46-60.
    • (2000) Statistical Science , vol.15 , Issue.1 , pp. 46-60
    • Ibrahim, J.G.1    Chen, M.H.2
  • 34
    • 80051723274 scopus 로고    scopus 로고
    • Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials
    • Hobbs BP, Carlin BP, Mandrekar SJ, Sargent DJ. Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 2011; 67(3):1047-1056.
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 1047-1056
    • Hobbs, B.P.1    Carlin, B.P.2    Mandrekar, S.J.3    Sargent, D.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.