메뉴 건너뛰기




Volumn 23, Issue 1, 2015, Pages 85-97

Observer-biased fuzzy clustering

Author keywords

Clustering algorithms; Fuzzy c means (FCM); Fuzzy clustering; Machine learning; Pattern recognition; Shrinkage

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; FUZZY CLUSTERING; FUZZY SYSTEMS; LEARNING SYSTEMS; PATTERN RECOGNITION; SHRINKAGE;

EID: 84934998379     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2014.2306434     Document Type: Article
Times cited : (48)

References (46)
  • 1
    • 77957791609 scopus 로고    scopus 로고
    • Comparing fuzzy, probabilistic, and possibilistic partitions
    • Oct.
    • D. Anderson, J. Bezdek, M. Popescu, and J. Keller, "Comparing fuzzy, probabilistic, and possibilistic partitions," IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 906-919, Oct. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.5 , pp. 906-919
    • Anderson, D.1    Bezdek, J.2    Popescu, M.3    Keller, J.4
  • 4
    • 69849084219 scopus 로고    scopus 로고
    • IGBMC CNRS-INSERM-ULP, BP 10142, 67404 Illkirch Cedex, France. [Online]. Available
    • D. Dembélé and P. Kastner. (2003). Fuzzy c-means for clustering microarray data, IGBMC CNRS-INSERM-ULP, BP 10142, 67404 Illkirch Cedex, France. [Online]. Available: Http://www-igbmc.u-strasbg.fr/projets/fcm/
    • (2003) Fuzzy c-Means for Clustering Microarray Data
    • Dembélé, D.1    Kastner, P.2
  • 5
    • 0037118555 scopus 로고    scopus 로고
    • A fuzzy hybrid hierarchical clustering method with a new criterion to find the optimal partition
    • A. Devillez, P. Billaudel, and Lecolier, "A fuzzy hybrid hierarchical clustering method with a new criterion to find the optimal partition," Fuzzy Sets Syst., vol. 128, pp. 323-338, 2002.
    • (2002) Fuzzy Sets Syst. , vol.128 , pp. 323-338
    • Devillez, A.1    Billaudel, P.2    Lecolier3
  • 6
    • 0028371317 scopus 로고
    • Fuzzy sets-A convenient fiction for modeling vagueness and possibility
    • Feb.
    • D. Dubois and H. Prade, "Fuzzy sets-A convenient fiction for modeling vagueness and possibility," IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 16-21, Feb. 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.1 , pp. 16-21
    • Dubois, D.1    Prade, H.2
  • 7
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms-A position paper
    • V. Estivill-Castro, "Why so many clustering algorithms-A position paper," ACM SIGKDD Explorations Newslett., vol. 4, no. 1, pp. 65-75, 2002.
    • (2002) ACM SIGKDD Explorations Newslett. , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 8
    • 55249094095 scopus 로고    scopus 로고
    • A fuzzy clustering algorithm with a variable focal point
    • Hong Kong, China, Jun.
    • P. Fazendeiro and J. V. de Oliveira, "A fuzzy clustering algorithm with a variable focal point," in Proc. IEEE World Congr. Comput. Intell., Hong Kong, China, Jun. 2008, pp. 1049-1056.
    • (2008) Proc. IEEE World Congr. Comput. Intell. , pp. 1049-1056
    • Fazendeiro, P.1    De Oliveira, J.V.2
  • 9
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by competitive agglomeration
    • H. Frigui and R. Krishnapuram, "Clustering by competitive agglomeration," Pattern Recog., vol. 30, no. 7, pp. 1109-1119, 1997.
    • (1997) Pattern Recog. , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 11
    • 77955417705 scopus 로고    scopus 로고
    • James-Stein shrinkage to improve K-means cluster analysis
    • J. Gao and D. Hitchcock, "James-Stein shrinkage to improve K-means cluster analysis," Comput. Statist. Data Anal., vol. 54, no. 9, pp. 2113-2127, 2010.
    • (2010) Comput. Statist. Data Anal. , vol.54 , Issue.9 , pp. 2113-2127
    • Gao, J.1    Hitchcock, D.2
  • 12
    • 0024701488 scopus 로고
    • Unsupervised optimal fuzzy clustering
    • Jul.
    • I. Gath and A. Geva, "Unsupervised optimal fuzzy clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 773-781, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 773-781
    • Gath, I.1    Geva, A.2
  • 13
    • 60549106246 scopus 로고    scopus 로고
    • Density-weighted fuzzy c-means clustering
    • Feb.
    • R. J. Hathaway and Y. Hu, "Density-weighted fuzzy c-means clustering," IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 243-252, Feb. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.1 , pp. 243-252
    • Hathaway, R.J.1    Hu, Y.2
  • 15
    • 76849102157 scopus 로고    scopus 로고
    • Fuzzy PCA-guided robust kmeans clustering
    • Feb.
    • K. Honda, A. Notsu, and H. Ichihashi, "Fuzzy PCA-guided robust kmeans clustering," IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 67-79, Feb. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.1 , pp. 67-79
    • Honda, K.1    Notsu, A.2    Ichihashi, H.3
  • 16
  • 17
    • 0033280284 scopus 로고    scopus 로고
    • Hierarchical unsupervised fuzzy clustering
    • Dec.
    • A. Geva, "Hierarchical unsupervised fuzzy clustering," IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 723-733, Dec. 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.6 , pp. 723-733
    • Geva, A.1
  • 18
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Statist. Probab., 1967, vol. 1, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 21
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • A. Jain, M. Murty, and P. Flynn, "Data clustering: A review," ACM Comput. Surv., vol. 31, no. 3, pp. 264-323, 1999.
    • (1999) ACM Comput. Surv. , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.1    Murty, M.2    Flynn, P.3
  • 22
    • 65249117580 scopus 로고    scopus 로고
    • NIFTI: An evolutionary approach for finding number of clusters in microarray data
    • S. Jonnalagadda and R. Srinivasan, "NIFTI: An evolutionary approach for finding number of clusters in microarray data," BMC Bioinformatics, vol. 10, p. 40, 2009.
    • (2009) BMC Bioinformatics , vol.10 , pp. 40
    • Jonnalagadda, S.1    Srinivasan, R.2
  • 23
    • 0028667331 scopus 로고
    • New algorithms for solving the fuzzy clustering problem
    • M. Kamel and S. Selim, "New algorithms for solving the fuzzy clustering problem," Pattern Recog., vol. 27, no. 3, pp. 421-428, 1994.
    • (1994) Pattern Recog. , vol.27 , Issue.3 , pp. 421-428
    • Kamel, M.1    Selim, S.2
  • 24
    • 0029236367 scopus 로고
    • Compatible cluster merging for fuzzy modelling
    • Yokohama, Japan, Mar. 20-24
    • U. Kaymak and R. Babuska, "Compatible cluster merging for fuzzy modelling," in Proc. IEEE Int. Conf. Fuzzy Syst., Yokohama, Japan, Mar. 20-24, 1995, vol. 2, pp. 897-904.
    • (1995) Proc. IEEE Int. Conf. Fuzzy Syst. , vol.2 , pp. 897-904
    • Kaymak, U.1    Babuska, R.2
  • 25
    • 0026850464 scopus 로고
    • Fitting an unknown number of lines and planes to image data through compatible cluster merging
    • R. Krishnapuram and C.-P. Freg, "Fitting an unknown number of lines and planes to image data through compatible cluster merging," Pattern Recog., vol. 25, no. 4, pp. 385-400, 1992.
    • (1992) Pattern Recog. , vol.25 , Issue.4 , pp. 385-400
    • Krishnapuram, R.1    Freg, C.-P.2
  • 26
    • 52949101047 scopus 로고    scopus 로고
    • Agglomerative fuzzy Kmeans clustering algorithm with selection of number of clusters
    • Nov.
    • M. Li, M. Ng, Y.-M. Cheung, and J. Huang, "Agglomerative fuzzy Kmeans clustering algorithm with selection of number of clusters," IEEE Trans. Knowl. Data Eng., vol. 20, no. 11, pp. 1519-1534, Nov. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.11 , pp. 1519-1534
    • Li, M.1    Ng, M.2    Cheung, Y.-M.3    Huang, J.4
  • 28
    • 0036833265 scopus 로고    scopus 로고
    • Interactive clustering and merging with a new fuzzy expected value
    • C. G. Looney, "Interactive clustering and merging with a new fuzzy expected value," Pattern Recog., vol. 35, no. 11, pp. 2413-2423, 2002.
    • (2002) Pattern Recog. , vol.35 , Issue.11 , pp. 2413-2423
    • Looney, C.G.1
  • 29
    • 84934962018 scopus 로고    scopus 로고
    • Data centering in feature space
    • presented at the, Key West, FL, USA, Jan. 3-6
    • M. Meila, "Data centering in feature space," presented at the Artif. Intell. Statist. Conf., Key West, FL, USA, Jan. 3-6, 2003.
    • (2003) Artif. Intell. Statist. Conf.
    • Meila, M.1
  • 30
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Aug.
    • N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy c-means model," IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370-379, Aug. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 32
    • 29444438571 scopus 로고    scopus 로고
    • Hierarchical FCM in a stepwise discovery of structure in data
    • W. Pedrycz and M. Reformat, "Hierarchical FCM in a stepwise discovery of structure in data," Soft Comput., vol. 10, pp. 244-256, 2006.
    • (2006) Soft Comput. , vol.10 , pp. 244-256
    • Pedrycz, W.1    Reformat, M.2
  • 33
    • 77950804457 scopus 로고    scopus 로고
    • Fuzzy clustering with viewpoints
    • Apr.
    • W. Pedrycz, V. Loia, and S. Senatore, "Fuzzy clustering with viewpoints," IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 274-284, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.2 , pp. 274-284
    • Pedrycz, W.1    Loia, V.2    Senatore, S.3
  • 35
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset: An information theoretic approach
    • C. Sugar and M. James, "Finding the number of clusters in a dataset: An information theoretic approach," J. Amer. Statist. Assoc., vol. 98, no. 463, pp. 750-763, 2003.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , Issue.463 , pp. 750-763
    • Sugar, C.1    James, M.2
  • 37
    • 84983945897 scopus 로고
    • On the convergence of the fuzzy clustering algorithm "Fuzzy ISODATA
    • G. Trzebiatowski and B. Bank, "On the convergence of the fuzzy clustering algorithm "Fuzzy ISODATA," J. Appl. Math. Mech., vol. 66, no. 6, pp. 201-208, 1986.
    • (1986) J. Appl. Math. Mech. , vol.66 , Issue.6 , pp. 201-208
    • Trzebiatowski, G.1    Bank, B.2
  • 38
    • 0004305250 scopus 로고
    • Univ. Wisconsin Hospitals Madison, WI, USA. [Online]. Available
    • W. Wolberg. (1991). Wisconsin Breast Cancer Database, Univ. Wisconsin Hospitals Madison, WI, USA. [Online]. Available: Http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancerwisconsin/breast-cancer-wisconsin.names
    • (1991) Wisconsin Breast Cancer Database
    • Wolberg, W.1
  • 39
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • May
    • R. Xu and D.Wunsch, II, "Survey of clustering algorithms," IEEE Trans. Neur. Netw., vol. 16, no. 3, pp. 645-678, May 2005.
    • (2005) IEEE Trans. Neur. Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 40
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • R.Yager and D. Filev, "Generation of fuzzy rules by mountain clustering," J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 209-219, 1994.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 209-219
    • Yager, R.1    Filev, D.2
  • 42
    • 33745714005 scopus 로고    scopus 로고
    • A new cluster validity for data clustering
    • X. Yang, A. Cao, and Song, "A new cluster validity for data clustering," Neur. Process. Lett., vol. 23, no. 3, pp. 325-344, 2006.
    • (2006) Neur. Process. Lett. , vol.23 , Issue.3 , pp. 325-344
    • Yang, X.1    Cao, A.2    Song3
  • 43
    • 79551627018 scopus 로고    scopus 로고
    • A kernel fuzzy c-means clusteringbased fuzzy support vector machine algorithm for classification problems with outliers or noises
    • Feb.
    • X. Yang, G. Zhang, J. Lu, and J. Ma, "A kernel fuzzy c-means clusteringbased fuzzy support vector machine algorithm for classification problems with outliers or noises," IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 105-115, Feb. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.1 , pp. 105-115
    • Yang, X.1    Zhang, G.2    Lu, J.3    Ma, J.4
  • 44
    • 79551622290 scopus 로고    scopus 로고
    • A robust automatic merging possibilistic clustering method
    • Feb.
    • M. Yang and C-Yo Lai, "A robust automatic merging possibilistic clustering method," IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 26-41, Feb. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.1 , pp. 26-41
    • Yang, M.1    Lai, C.-Y.2
  • 45
    • 24344484344 scopus 로고    scopus 로고
    • General c-means clustering model
    • Aug.
    • J. Yu, "General c-means clustering model," IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 8, pp. 1197-1211, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , Issue.8 , pp. 1197-1211
    • Yu, J.1
  • 46
    • 84885576449 scopus 로고    scopus 로고
    • A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means
    • Jun.
    • J. Wu, H. Xiong, C. Liu, and J. Chen, "A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means," IEEE Trans. Fuzzy Syst., vol. 20, no. 3, pp. 557-571, Jun. 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.3 , pp. 557-571
    • Wu, J.1    Xiong, H.2    Liu, C.3    Chen, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.