메뉴 건너뛰기




Volumn 120, Issue , 2015, Pages 61-69

Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery

Author keywords

Biodegradable polymer; Bone tissue engineering; Composite; Hydroxyapatite; Scaffold

Indexed keywords

BIOCOMPATIBILITY; BIODEGRADABLE POLYMERS; BIOMECHANICS; BONE; BUTENES; COMPOSITE MATERIALS; COMPOSITE STRUCTURES; DIFFERENTIAL SCANNING CALORIMETRY; FOURIER TRANSFORM INFRARED SPECTROSCOPY; HYDROXYAPATITE; MECHANICAL PROPERTIES; OSTEOBLASTS; SCAFFOLDS; SCANNING ELECTRON MICROSCOPY; STEM CELLS; STRUCTURE (COMPOSITION); TISSUE; TISSUE ENGINEERING; TRANSMISSION ELECTRON MICROSCOPY; X RAY DIFFRACTION;

EID: 84934976502     PISSN: 01413910     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.polymdegradstab.2015.06.009     Document Type: Article
Times cited : (51)

References (30)
  • 2
    • 0034773680 scopus 로고    scopus 로고
    • Biology of bone and how it orchestrates the form and function of the skeleton
    • D.W. Sommerfeldt, and C.T. Rubin Biology of bone and how it orchestrates the form and function of the skeleton Euro Spine J. 10 2001 S86 S95
    • (2001) Euro Spine J. , vol.10 , pp. S86-S95
    • Sommerfeldt, D.W.1    Rubin, C.T.2
  • 3
    • 84881138348 scopus 로고    scopus 로고
    • Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers
    • W. Chang, X. Mu, X. Zhu, G. Ma, C. Li, F. Xu, and J. Nie Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers Mater. Sci. Eng. C 33 2013 4369 4376
    • (2013) Mater. Sci. Eng. C , vol.33 , pp. 4369-4376
    • Chang, W.1    Mu, X.2    Zhu, X.3    Ma, G.4    Li, C.5    Xu, F.6    Nie, J.7
  • 4
    • 79957652421 scopus 로고    scopus 로고
    • Bone regeneration: current concepts and future directions
    • R. Dimitriou, E. Jones, D. McGonagle, and P.V. Giannoudis Bone regeneration: current concepts and future directions BMC Med. 9 2011 66 76
    • (2011) BMC Med. , vol.9 , pp. 66-76
    • Dimitriou, R.1    Jones, E.2    McGonagle, D.3    Giannoudis, P.V.4
  • 5
    • 84870657570 scopus 로고    scopus 로고
    • Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2
    • F. Yang, J. Wang, J. Hou, H. Guo, and C. Liu Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2 Biomater 34 2013 1514 1528
    • (2013) Biomater , vol.34 , pp. 1514-1528
    • Yang, F.1    Wang, J.2    Hou, J.3    Guo, H.4    Liu, C.5
  • 6
    • 70349840761 scopus 로고    scopus 로고
    • Electrospun materials as potential platforms for bone tissue engineering
    • J.H. Jang, O. Castano, and H.W. Kim Electrospun materials as potential platforms for bone tissue engineering Adv. Drug Deliv. Rev. 61 2009 1065 1083
    • (2009) Adv. Drug Deliv. Rev. , vol.61 , pp. 1065-1083
    • Jang, J.H.1    Castano, O.2    Kim, H.W.3
  • 7
    • 33748122330 scopus 로고    scopus 로고
    • Macrochanneled poly(ε-caprolactone)/hydroxyapatite scaffold by combination of bi-axial machining and lamination
    • Y.H. Koh, C.J. Bae, and J.J. Sun Macrochanneled poly(ε-caprolactone)/hydroxyapatite scaffold by combination of bi-axial machining and lamination J. Mater. Sci. - Mater. Med. 17 2006 773 778
    • (2006) J. Mater. Sci. - Mater. Med. , vol.17 , pp. 773-778
    • Koh, Y.H.1    Bae, C.J.2    Sun, J.J.3
  • 8
    • 67349265169 scopus 로고    scopus 로고
    • Polymer nanocomposites for bone tissue substitutes
    • I. Kotela, J. Podporska, and E. Soltysiak Polymer nanocomposites for bone tissue substitutes Ceram. Int. 35 2009 2475 2480
    • (2009) Ceram. Int. , vol.35 , pp. 2475-2480
    • Kotela, I.1    Podporska, J.2    Soltysiak, E.3
  • 9
    • 84865623333 scopus 로고    scopus 로고
    • Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: study on the morphology, crystallinity structure and thermal stability
    • A. Sonseca, L. Peponi, O. Sahuquillo, J.M. Kenny, and E. Giménez Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: study on the morphology, crystallinity structure and thermal stability Polym. Degrad. Stab. 97 10 2012 2052 2059
    • (2012) Polym. Degrad. Stab. , vol.97 , Issue.10 , pp. 2052-2059
    • Sonseca, A.1    Peponi, L.2    Sahuquillo, O.3    Kenny, J.M.4    Giménez, E.5
  • 10
    • 84871738296 scopus 로고    scopus 로고
    • Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering
    • C.C. Yu, J.J. Chang, and Y.H. Lee Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering Mater. Lett. 93 2013 133 136
    • (2013) Mater. Lett. , vol.93 , pp. 133-136
    • Yu, C.C.1    Chang, J.J.2    Lee, Y.H.3
  • 11
    • 56349168856 scopus 로고    scopus 로고
    • Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering
    • M.V. Jose, V. Thomas, K.T. Johnson, D.R. Dean, and E. Nyairo Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering Acta Biomater. 5 2009 305 315
    • (2009) Acta Biomater. , vol.5 , pp. 305-315
    • Jose, M.V.1    Thomas, V.2    Johnson, K.T.3    Dean, D.R.4    Nyairo, E.5
  • 12
    • 27644495665 scopus 로고    scopus 로고
    • A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material
    • Y. Ito, H. Hasuda, and M. Kamitakahara A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material J. Biosci. Bioeng. 100 2005 43 49
    • (2005) J. Biosci. Bioeng. , vol.100 , pp. 43-49
    • Ito, Y.1    Hasuda, H.2    Kamitakahara, M.3
  • 13
    • 34547585979 scopus 로고    scopus 로고
    • Biodegradable polymers as biomaterials
    • L.S. Nair, and C.T. Laurencin Biodegradable polymers as biomaterials Prog. Polym. Sci. 32 2007 762 798
    • (2007) Prog. Polym. Sci. , vol.32 , pp. 762-798
    • Nair, L.S.1    Laurencin, C.T.2
  • 14
    • 0034580276 scopus 로고    scopus 로고
    • Synthetic biodegradable polymers as orthopaedic devices
    • J.C. Middleton, and A.J. Tipton Synthetic biodegradable polymers as orthopaedic devices Biomater 21 2000 2335 2346
    • (2000) Biomater , vol.21 , pp. 2335-2346
    • Middleton, J.C.1    Tipton, A.J.2
  • 15
    • 77957877707 scopus 로고    scopus 로고
    • Biodegradable polymer matrix nanocomposites for tissue engineering: a review
    • I. Armentano, M. Dottori, and E. Fortunati Biodegradable polymer matrix nanocomposites for tissue engineering: a review Polym. Degrad. Stab. 95 11 2010 2126 2146
    • (2010) Polym. Degrad. Stab. , vol.95 , Issue.11 , pp. 2126-2146
    • Armentano, I.1    Dottori, M.2    Fortunati, E.3
  • 16
    • 84885018649 scopus 로고    scopus 로고
    • Synthetic biopolymer nanocomposites for tissue engineering scaffolds
    • M. Okamoto, and B. John Synthetic biopolymer nanocomposites for tissue engineering scaffolds Prog. Polym. Sci. 38 2013 1487 1503
    • (2013) Prog. Polym. Sci. , vol.38 , pp. 1487-1503
    • Okamoto, M.1    John, B.2
  • 17
    • 84934939805 scopus 로고    scopus 로고
    • Osteoblast growth in cellulose nanocrystals and their nanobiocomposites with poly(butylene adipate-co-terephthalate) and poly(ε-caprolactone)
    • submitted
    • C.F. Bellani, C.L. Morelli, A. Ferrand, N.B. Jessel, R.E.S. Bretas, and M.C. Branciforti Osteoblast growth in cellulose nanocrystals and their nanobiocomposites with poly(butylene adipate-co-terephthalate) and poly(ε-caprolactone) Mater. Sci. Eng. C. 2015 submitted
    • (2015) Mater. Sci. Eng. C.
    • Bellani, C.F.1    Morelli, C.L.2    Ferrand, A.3    Jessel, N.B.4    Bretas, R.E.S.5    Branciforti, M.C.6
  • 19
    • 84861841382 scopus 로고    scopus 로고
    • PBAT based nanocomposites for medical and industrial applications
    • K. Fukushima, M.H. Wu, S. Bocchini, A. Rasyida, and M.C. Yang PBAT based nanocomposites for medical and industrial applications Mater. Sci. Eng. C 32 6 2012 1331 1351
    • (2012) Mater. Sci. Eng. C , vol.32 , Issue.6 , pp. 1331-1351
    • Fukushima, K.1    Wu, M.H.2    Bocchini, S.3    Rasyida, A.4    Yang, M.C.5
  • 20
    • 84865651210 scopus 로고    scopus 로고
    • Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability
    • W.A. Ribeiro Neto, I.H.L. Pereira, E. Ayres, A.C.C. de Paula, L. Averous, A.M. Góes, R.L. Oréfice, and R.E.S. Bretas Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability Polym. Degrad. Stab. 97 2012 2037 2051
    • (2012) Polym. Degrad. Stab. , vol.97 , pp. 2037-2051
    • Ribeiro Neto, W.A.1    Pereira, I.H.L.2    Ayres, E.3    De Paula, A.C.C.4    Averous, L.5    Góes, A.M.6    Oréfice, R.L.7    Bretas, R.E.S.8
  • 21
    • 33750452712 scopus 로고    scopus 로고
    • Properties of biocomposites based on lignocellulosic fillers
    • L. Avérous, and F. Le Digabel Properties of biocomposites based on lignocellulosic fillers Carbohyd Polym. 66 2006 480 493
    • (2006) Carbohyd Polym. , vol.66 , pp. 480-493
    • Avérous, L.1    Le Digabel, F.2
  • 22
    • 84862801329 scopus 로고    scopus 로고
    • Mechanical and morphological properties of poly(butylene adipate-co-terephthalate) and poly(lactic acid) blended with organically modified silicate layers
    • M. Shahlari, and S. Lee Mechanical and morphological properties of poly(butylene adipate-co-terephthalate) and poly(lactic acid) blended with organically modified silicate layers Polym. Eng. Sci. 52 2012 1420 1428
    • (2012) Polym. Eng. Sci. , vol.52 , pp. 1420-1428
    • Shahlari, M.1    Lee, S.2
  • 23
    • 84872352637 scopus 로고    scopus 로고
    • Nanostructured nanofibers based on PBT and POSS: effect of POSS on the alignment and macromolecular orientation of the nanofibers
    • E.S. Cozza, Q. Ma, O. Monticelli, and P. Cebe Nanostructured nanofibers based on PBT and POSS: effect of POSS on the alignment and macromolecular orientation of the nanofibers Eur. Polym. J. 49 2013 33 40
    • (2013) Eur. Polym. J. , vol.49 , pp. 33-40
    • Cozza, E.S.1    Ma, Q.2    Monticelli, O.3    Cebe, P.4
  • 24
    • 38149021308 scopus 로고    scopus 로고
    • Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC
    • T. Kijchavengkul, R. Auras, and M. Rubino Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC Polym. Test. 27 2008 55 60
    • (2008) Polym. Test. , vol.27 , pp. 55-60
    • Kijchavengkul, T.1    Auras, R.2    Rubino, M.3
  • 25
    • 84901428859 scopus 로고    scopus 로고
    • Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells
    • A. Schellenberg, S. Joussen, K. Moser, N. Hampe, N. Hersch, and H. Hemeda Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells Biomater 35 2014 6351 6358
    • (2014) Biomater , vol.35 , pp. 6351-6358
    • Schellenberg, A.1    Joussen, S.2    Moser, K.3    Hampe, N.4    Hersch, N.5    Hemeda, H.6
  • 26
    • 84861704819 scopus 로고    scopus 로고
    • Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds
    • C.M. Murphy, A. Matsiko, M.G. Haugh, J.P. Gleeson, and F.J. O'Brien Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds J. Mech. Behav. Biomed. Mater. 11 2012 53 62
    • (2012) J. Mech. Behav. Biomed. Mater. , vol.11 , pp. 53-62
    • Murphy, C.M.1    Matsiko, A.2    Haugh, M.G.3    Gleeson, J.P.4    O'Brien, F.J.5
  • 28
    • 56949100105 scopus 로고    scopus 로고
    • Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling
    • A.L. Zajac, and D.E. Discher Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling Curr. Opin. Cell. Biol. 20 6 2008 609 615
    • (2008) Curr. Opin. Cell. Biol. , vol.20 , Issue.6 , pp. 609-615
    • Zajac, A.L.1    Discher, D.E.2
  • 29
    • 84869217557 scopus 로고    scopus 로고
    • Utilization of peanut husks as a filler in aliphatic-aromatic polyesters: preparation, characterization, and biodegradability
    • C.S. Wu Utilization of peanut husks as a filler in aliphatic-aromatic polyesters: preparation, characterization, and biodegradability Polym. Degrad. Stab. 97 2012 2388 2395
    • (2012) Polym. Degrad. Stab. , vol.97 , pp. 2388-2395
    • Wu, C.S.1
  • 30
    • 39049108810 scopus 로고    scopus 로고
    • Human embryonic stem cells: origins, characteristics and potential for regenerative therapy
    • J.C. Mountford Human embryonic stem cells: origins, characteristics and potential for regenerative therapy Transfus. Med. 18 2008 1 12
    • (2008) Transfus. Med. , vol.18 , pp. 1-12
    • Mountford, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.