메뉴 건너뛰기




Volumn 160, Issue , 2015, Pages 73-89

Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead

Author keywords

Early warning system; Forecasting; Nowcasting; Remote sensing; Total suspended solids; Water supply

Indexed keywords

DATA FUSION; DEFORESTATION; LAKES; MEAN SQUARE ERROR; POTABLE WATER; REMOTE SENSING; RESERVOIRS (WATER); WATER LEVELS; WATER QUALITY; WATER SUPPLY; WATER TREATMENT;

EID: 84934926165     PISSN: 03014797     EISSN: 10958630     Source Type: Journal    
DOI: 10.1016/j.jenvman.2015.06.003     Document Type: Article
Times cited : (41)

References (68)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • Awavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. Awavelet neural network conjunction model for groundwater level forecasting. J.Hydrol. 2011, 407(1-4):28-40.
    • (2011) J.Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 67349285333 scopus 로고    scopus 로고
    • Forecasting nonlinear time series with a hybrid methodology
    • Aladag C.H., Egrioglu E., Kadilar C. Forecasting nonlinear time series with a hybrid methodology. Appl. Math. Lett. 2009, 22(9):1467-1470. 10.1016/j.aml.2009.02.006.
    • (2009) Appl. Math. Lett. , vol.22 , Issue.9 , pp. 1467-1470
    • Aladag, C.H.1    Egrioglu, E.2    Kadilar, C.3
  • 3
    • 27744524615 scopus 로고    scopus 로고
    • Water consumption prediction of Istanbul city by using fuzzy logic approach
    • Altunkaynak A., Oezger M., Cakmakci M. Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour. Manag. 2005, 19:641-654.
    • (2005) Water Resour. Manag. , vol.19 , pp. 641-654
    • Altunkaynak, A.1    Oezger, M.2    Cakmakci, M.3
  • 4
    • 84866158256 scopus 로고    scopus 로고
    • Neural networks based nonlinear time series regression for water level forecasting of Dungun river
    • Arbain S., Wibowo A. Neural networks based nonlinear time series regression for water level forecasting of Dungun river. J.Comput. Sci. 2012, 8(9):1506-1513.
    • (2012) J.Comput. Sci. , vol.8 , Issue.9 , pp. 1506-1513
    • Arbain, S.1    Wibowo, A.2
  • 7
    • 84865328334 scopus 로고    scopus 로고
    • Time series prediction based on artificial neural network for estimation of forest biomass
    • Cai S., Kang X., Zhang L. Time series prediction based on artificial neural network for estimation of forest biomass. Int. J. Adv. Comput. Technol. 2012, 4(12):318-326.
    • (2012) Int. J. Adv. Comput. Technol. , vol.4 , Issue.12 , pp. 318-326
    • Cai, S.1    Kang, X.2    Zhang, L.3
  • 8
    • 84881282093 scopus 로고    scopus 로고
    • Monitoring nutrient-concentration in Tampa Bay with MODIS images and machine learning model
    • 707 978-1-4673-5200-0/13/$31.00©2013IEEE
    • Chang N.B., Xuan Z. Monitoring nutrient-concentration in Tampa Bay with MODIS images and machine learning model. IEEE Conference 2013, vol. 702-707. 978-1-4673-5200-0/13/$31.00©2013IEEE.
    • (2013) IEEE Conference , vol.702
    • Chang, N.B.1    Xuan, Z.2
  • 9
    • 0037200170 scopus 로고    scopus 로고
    • Reservoir operation using grey fussy dynamic programming
    • Chang F.J., Hui S.C., Chen Y.C. Reservoir operation using grey fussy dynamic programming. Hydrol. Process. 2002, 16(12):2395-2408.
    • (2002) Hydrol. Process. , vol.16 , Issue.12 , pp. 2395-2408
    • Chang, F.J.1    Hui, S.C.2    Chen, Y.C.3
  • 10
    • 77957306906 scopus 로고    scopus 로고
    • Acomparative data mining analysis for information retrieval of MODIS images: monitoring Lake turbidity changes at Lake Okeechobee, Florida
    • Chang N.B., Daranpob A., Yang J., Jin K.R. Acomparative data mining analysis for information retrieval of MODIS images: monitoring Lake turbidity changes at Lake Okeechobee, Florida. J.Appl. Remote Sens. 2009, 3(1):033549.
    • (2009) J.Appl. Remote Sens. , vol.3 , Issue.1 , pp. 033549
    • Chang, N.B.1    Daranpob, A.2    Yang, J.3    Jin, K.R.4
  • 11
    • 84893974700 scopus 로고    scopus 로고
    • Integrated data fusion and mining techniques for monitoring total organic carbon concentrations in Lake
    • Chang N.B., Vannah B.W., Yang Y.J., Elovitz M. Integrated data fusion and mining techniques for monitoring total organic carbon concentrations in Lake. Int. J. Remote Sens. 2014, 35(3):1064-1093.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.3 , pp. 1064-1093
    • Chang, N.B.1    Vannah, B.W.2    Yang, Y.J.3    Elovitz, M.4
  • 12
    • 84905923309 scopus 로고    scopus 로고
    • Comparative sensor fusion between hyperspectral and multispectral satellite sensors for monitoring microcystin distribution in Lake Erie
    • Chang N.B., Vannah B.W., Yang Y.J., Elovitz M. Comparative sensor fusion between hyperspectral and multispectral satellite sensors for monitoring microcystin distribution in Lake Erie. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7(6):2426-2442. 10.1109/JSTARS.2014.2329913.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , Issue.6 , pp. 2426-2442
    • Chang, N.B.1    Vannah, B.W.2    Yang, Y.J.3    Elovitz, M.4
  • 13
    • 85046917151 scopus 로고    scopus 로고
    • Smart information reconstruction via time-space-spectrum continuum for cloud removal in satellite images
    • Chang N.B., Bai K., Chen C.F. Smart information reconstruction via time-space-spectrum continuum for cloud removal in satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 99:1-15.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.99 , pp. 1-15
    • Chang, N.B.1    Bai, K.2    Chen, C.F.3
  • 14
    • 77949541424 scopus 로고    scopus 로고
    • Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN
    • Chattopadhyay S., Chattopadhyay G. Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN. Comptes Rendus Geosci. 2010, 342(2):100-107.
    • (2010) Comptes Rendus Geosci. , vol.342 , Issue.2 , pp. 100-107
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 15
    • 84918827055 scopus 로고    scopus 로고
    • Estimating wide range tota suspended solids concentrations from MODIS 250-m imageries: an improved method
    • Chen S., Han L., Chen X., Li D., Sun L., Li Y. Estimating wide range tota suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Phothogrammetry Remote Sens. 2015, 99:58-69.
    • (2015) ISPRS J. Phothogrammetry Remote Sens. , vol.99 , pp. 58-69
    • Chen, S.1    Han, L.2    Chen, X.3    Li, D.4    Sun, L.5    Li, Y.6
  • 16
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration
    • Cheng C.T., Ou C.P., Chau K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J.Hydrol. 2002, 268(1-4):72-86.
    • (2002) J.Hydrol. , vol.268 , Issue.1-4 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 18
    • 77950894862 scopus 로고    scopus 로고
    • The use of NARX neural networks to predict chaotic time series
    • 1991-8755
    • Diaconescu E. The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comput. Res. 2008, 3(3):182-192. 1991-8755.
    • (2008) WSEAS Trans. Comput. Res. , vol.3 , Issue.3 , pp. 182-192
    • Diaconescu, E.1
  • 19
    • 53949114438 scopus 로고    scopus 로고
    • Ahybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Diaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G., Moncada-Herrera J.A. Ahybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 2008, 42:8331-8340.
    • (2008) Atmos. Environ. , vol.42 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 20
    • 84934959140 scopus 로고
    • Colorado river ecology and dam management
    • Committee to Review the Glen Canyon Environmental Studies, Water Science and Technology Board, National Research Council, Santafe, New Mexico, 0-309-59772-2
    • Edward D.A. Colorado river ecology and dam management. Proceeding of a Symposium, May 24-25 1990 1991, 288. Committee to Review the Glen Canyon Environmental Studies, Water Science and Technology Board, National Research Council, Santafe, New Mexico, 0-309-59772-2.
    • (1991) Proceeding of a Symposium, May 24-25 1990 , pp. 288
    • Edward, D.A.1
  • 21
    • 67349187003 scopus 로고    scopus 로고
    • Anew approach based on artificial neural networks for high order multivariate fuzzy time series
    • Egrioglu E., Aladag C.H., Yolcu U., Uslu V.R., Basaran M.A. Anew approach based on artificial neural networks for high order multivariate fuzzy time series. Expert Syst. Appl. 2009, 36(7):10589-10594. 10.1016/j.eswa.2009.02.057.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10589-10594
    • Egrioglu, E.1    Aladag, C.H.2    Yolcu, U.3    Uslu, V.R.4    Basaran, M.A.5
  • 22
    • 84934976020 scopus 로고    scopus 로고
    • 5.5. Turbidity
    • (accessed 6.3.212)
    • EPA 5.5. Turbidity. Water: Monitoring and Assessment 2012, (accessed 6.3.212). http://water.epa.gov/type/rsl/monitoring/vms55.cfm.
    • (2012) Water: Monitoring and Assessment
  • 23
    • 84893772505 scopus 로고    scopus 로고
    • (accessed 6.3.212)
    • EPA Water: Total Maximum Daily Loads (303d) 2012, (accessed 6.3.212). http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/overview.cfm.
    • (2012) Water: Total Maximum Daily Loads (303d)
  • 24
    • 77950516820 scopus 로고    scopus 로고
    • Ahybrid neural network and ARIMA model for water quality time series prediction
    • Faruk D.Ö. Ahybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23(4):586-594.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.Ö.1
  • 25
    • 34249277375 scopus 로고    scopus 로고
    • An estimation of the suspended particular matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurement and numerical method results
    • Fettweis M., Nechad B., Eynde D.V. An estimation of the suspended particular matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurement and numerical method results. Cont. Shelf Res. 2007, 27:1568-1583.
    • (2007) Cont. Shelf Res. , vol.27 , pp. 1568-1583
    • Fettweis, M.1    Nechad, B.2    Eynde, D.V.3
  • 26
    • 85168246204 scopus 로고    scopus 로고
    • Fondriest Fundamentals of Environmental Measurements 2015, http://www.fondriest.com/environmental-measurements/parameters/water-%20quality/turbidity-total-suspended-solids-water-clarity/.
    • (2015) Fundamentals of Environmental Measurements
  • 27
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao F., Masek J., Schwaller M., Hall F. On the blending of Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44(8):2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 28
    • 33748084741 scopus 로고    scopus 로고
    • Multivariate linear parametric models applied to daily rainfall time series
    • Girmaldi S., Serinaldi F., Tallerini C. Multivariate linear parametric models applied to daily rainfall time series. Adv. Geosci. 2005, 2:87-92.
    • (2005) Adv. Geosci. , vol.2 , pp. 87-92
    • Girmaldi, S.1    Serinaldi, F.2    Tallerini, C.3
  • 29
    • 0036475142 scopus 로고    scopus 로고
    • Characterization and prediction of runoff dynamics: a nonlinear dynamical view
    • Islam N.N., Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv. Water Resour. 2002, 25:179-190.
    • (2002) Adv. Water Resour. , vol.25 , pp. 179-190
    • Islam, N.N.1    Sivakumar, B.2
  • 30
    • 84868230238 scopus 로고    scopus 로고
    • Chlorophyll and turbidity concentration as an index of water quality of the Gulf of Gabes from MODIS in 2009
    • Katlane R., Dupouy C., Zargouni F. Chlorophyll and turbidity concentration as an index of water quality of the Gulf of Gabes from MODIS in 2009. Rev. Teledetect. 2012, 11(1):263-271.
    • (2012) Rev. Teledetect. , vol.11 , Issue.1 , pp. 263-271
    • Katlane, R.1    Dupouy, C.2    Zargouni, F.3
  • 31
    • 0344326232 scopus 로고    scopus 로고
    • Aneural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery
    • Keiner L.E., Yan X.H. Aneural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sens. Environ. 1998, 66:63-165.
    • (1998) Remote Sens. Environ. , vol.66 , pp. 63-165
    • Keiner, L.E.1    Yan, X.H.2
  • 32
    • 0022267235 scopus 로고
    • Development of water quality models applicable throughout the entire San Fransisco Bay and Delta
    • Khorram S. Development of water quality models applicable throughout the entire San Fransisco Bay and Delta. Photogrammetric Eng. Remote Sens. 1985, 51:53-62.
    • (1985) Photogrammetric Eng. Remote Sens. , vol.51 , pp. 53-62
    • Khorram, S.1
  • 33
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T., Valdés J. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J.Hydrol. Eng. 2003, 8(6):319-328.
    • (2003) J.Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.1    Valdés, J.2
  • 34
    • 0036144261 scopus 로고    scopus 로고
    • Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data
    • Koponen S., Pulliainen J., Kallio K., Hallikaine M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79(1):51-59.
    • (2002) Remote Sens. Environ. , vol.79 , Issue.1 , pp. 51-59
    • Koponen, S.1    Pulliainen, J.2    Kallio, K.3    Hallikaine, M.4
  • 35
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short0term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short0term precipitation forecasting using artificial neural networks. Mon. Weather Rev. 1998, 126:470-482.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 37
    • 0027787839 scopus 로고
    • Water quality monitorig in estuarine water using the Landsat thematic mapper
    • Lavery P., Pattiaratchi C., Wyllie A., Hick P. Water quality monitorig in estuarine water using the Landsat thematic mapper. Remote Sens. Environ. 1993, 46(3):268-280.
    • (1993) Remote Sens. Environ. , vol.46 , Issue.3 , pp. 268-280
    • Lavery, P.1    Pattiaratchi, C.2    Wyllie, A.3    Hick, P.4
  • 38
    • 77957994377 scopus 로고    scopus 로고
    • Forecasting time series using a methodology based n autoregressive integrated moving averaged and genetic programming
    • Lee Y.S., Tong L.L. Forecasting time series using a methodology based n autoregressive integrated moving averaged and genetic programming. Knowledge-Based Syst. 2011, 24(1):66-72.
    • (2011) Knowledge-Based Syst. , vol.24 , Issue.1 , pp. 66-72
    • Lee, Y.S.1    Tong, L.L.2
  • 39
    • 0034257933 scopus 로고    scopus 로고
    • Forecasting confined spatiotemporal chaos with genetic algorithms
    • López C., Álvarez A., Hernández-García E. Forecasting confined spatiotemporal chaos with genetic algorithms. Phys. Rev. Lett. 2000, 85:2300-2303. 10.1103/PhysRevLett.85.2300.
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 2300-2303
    • López, C.1    Álvarez, A.2    Hernández-García, E.3
  • 40
    • 0030285428 scopus 로고    scopus 로고
    • Financial forecasting using genetic algorithms
    • Mahfoud S., Mani G. Financial forecasting using genetic algorithms. Appl. Artif. Intell. 1996, 10:543-566. doi:10.1080/088395196118425.
    • (1996) Appl. Artif. Intell. , vol.10 , pp. 543-566
    • Mahfoud, S.1    Mani, G.2
  • 42
    • 50449108765 scopus 로고    scopus 로고
    • On recurrent neural networks for auto-similar traffic prediction: a performance evaluation
    • 978-85-89748-04-9
    • Menezes J.M.P., Barreto G.A. On recurrent neural networks for auto-similar traffic prediction: a performance evaluation. 2006 International Telecommunications Symposium 2006, 534-539. 978-85-89748-04-9.
    • (2006) 2006 International Telecommunications Symposium , pp. 534-539
    • Menezes, J.M.P.1    Barreto, G.A.2
  • 43
    • 0027335306 scopus 로고
    • Estimating suspended sediment concentrations in surface waters of the Amazn river wetlands from Landsat images
    • Mertes L., Smith M., Adams J. Estimating suspended sediment concentrations in surface waters of the Amazn river wetlands from Landsat images. Remote Sens. Environ. 1993, 43:281-301.
    • (1993) Remote Sens. Environ. , vol.43 , pp. 281-301
    • Mertes, L.1    Smith, M.2    Adams, J.3
  • 46
    • 0037143970 scopus 로고    scopus 로고
    • Quantification of surface suspended sediments along a river dominated coast with NOAA and SeaWiFS measurements: Louisiana, USA
    • Myint S.W., Walker N.D. Quantification of surface suspended sediments along a river dominated coast with NOAA and SeaWiFS measurements: Louisiana, USA. Int. J. Remote Sens. 2002, 23(16):3229-3249.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.16 , pp. 3229-3249
    • Myint, S.W.1    Walker, N.D.2
  • 47
    • 85168244956 scopus 로고    scopus 로고
    • Sedimentation Lake Mead
    • Last Updated: 06/29/2014.
    • National Park Service 2014, Sedimentation Lake Mead, Last Updated: 06/29/2014. http://www.nps.gov/lake/naturescience/sedimentation-lake-mead.htm.
    • (2014)
  • 48
    • 1942490118 scopus 로고    scopus 로고
    • Aneuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. Aneuro-fuzzy computing technique for modeling hydrological time series. J.Hydrol. 2004, 291(1-2):52-66.
    • (2004) J.Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 49
    • 0034273966 scopus 로고    scopus 로고
    • Using artificial neural networks to forecast chaotic time series
    • Oliveira K.A.D., Vannucci A., da Silva E.C. Using artificial neural networks to forecast chaotic time series. Phys. A: Stat. Mech. Appl. 2000, 284(1-4):393-404.
    • (2000) Phys. A: Stat. Mech. Appl. , vol.284 , Issue.1-4 , pp. 393-404
    • Oliveira, K.A.D.1    Vannucci, A.2    da Silva, E.C.3
  • 50
    • 25844457225 scopus 로고    scopus 로고
    • Artificial neural networks application in Lake water quality estimation using satellite imagery
    • Panda S.S., Garg V., Chaubey I. Artificial neural networks application in Lake water quality estimation using satellite imagery. J.Environ. Inform. 2004, 4(2):65-74.
    • (2004) J.Environ. Inform. , vol.4 , Issue.2 , pp. 65-74
    • Panda, S.S.1    Garg, V.2    Chaubey, I.3
  • 52
    • 77349085280 scopus 로고    scopus 로고
    • Estimating turbidity and total suspended matter in the Adour river plume (South bay of Biscay) using MODIS 250-m imagery
    • Petus C., Chust G., Gohin F., Doxaran D., Froidefond J.M., Sagarminaga Y. Estimating turbidity and total suspended matter in the Adour river plume (South bay of Biscay) using MODIS 250-m imagery. Cont. Shelf. Res. 2010, 30:379-392.
    • (2010) Cont. Shelf. Res. , vol.30 , pp. 379-392
    • Petus, C.1    Chust, G.2    Gohin, F.3    Doxaran, D.4    Froidefond, J.M.5    Sagarminaga, Y.6
  • 53
    • 0001053173 scopus 로고
    • Prediction of chaotic time series with neural networks and the issue of dynamic modeling
    • Principe J.C., Rathie A., Kuo J.M. Prediction of chaotic time series with neural networks and the issue of dynamic modeling. Int. J. Bifurc. Chaos 1992, 20:989-996. 10.1142/S0218127492000598.
    • (1992) Int. J. Bifurc. Chaos , vol.20 , pp. 989-996
    • Principe, J.C.1    Rathie, A.2    Kuo, J.M.3
  • 54
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long range precipitation prediction in California
    • Silverman D., Dracup J.A. Artificial neural networks and long range precipitation prediction in California. J.Appl. Methodol. 2000, 39:57-66.
    • (2000) J.Appl. Methodol. , vol.39 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 55
    • 34248184529 scopus 로고    scopus 로고
    • The use of time series modeling for the determination of rainfall climates of Iran
    • Soltani S., Modarres R., Eslamian S.S. The use of time series modeling for the determination of rainfall climates of Iran. Int. J. Climatol. 2007, 27(6):819-829.
    • (2007) Int. J. Climatol. , vol.27 , Issue.6 , pp. 819-829
    • Soltani, S.1    Modarres, R.2    Eslamian, S.S.3
  • 56
    • 84898738604 scopus 로고    scopus 로고
    • Characterization of spatial and temporal variation of suspended sediments in the Yellow and East China Ses using satellite ocean color data
    • Son S.H., Kim Y.H., Kwon J.I., Kim H.C., Park K.S. Characterization of spatial and temporal variation of suspended sediments in the Yellow and East China Ses using satellite ocean color data. GIScience Remote Sens. 2014, 51(2):212-226.
    • (2014) GIScience Remote Sens. , vol.51 , Issue.2 , pp. 212-226
    • Son, S.H.1    Kim, Y.H.2    Kwon, J.I.3    Kim, H.C.4    Park, K.S.5
  • 57
    • 0031100934 scopus 로고    scopus 로고
    • Forecasting chaotic time series with genetic algorithms
    • Szpiro G.G. Forecasting chaotic time series with genetic algorithms. Phys. Rev. E 1997, 55:2557-2568. 10.1103/PhysRevE.55.2557.
    • (1997) Phys. Rev. E , vol.55 , pp. 2557-2568
    • Szpiro, G.G.1
  • 58
    • 0028184165 scopus 로고
    • Local algorithms using SeaWiFS data for the retreival of ohytoplankton, pigments, suspended sediment, and yellow substancein coastal waters
    • Tassan S. Local algorithms using SeaWiFS data for the retreival of ohytoplankton, pigments, suspended sediment, and yellow substancein coastal waters. Appl. Opt. 1994, 33(12):2369-2378.
    • (1994) Appl. Opt. , vol.33 , Issue.12 , pp. 2369-2378
    • Tassan, S.1
  • 59
    • 27744500221 scopus 로고    scopus 로고
    • Application of grey system theory in the development of a runoff prediction model
    • Trivedi H.V., Singh J.K. Application of grey system theory in the development of a runoff prediction model. Biosyst. Eng. 2005, 92(4):521-526.
    • (2005) Biosyst. Eng. , vol.92 , Issue.4 , pp. 521-526
    • Trivedi, H.V.1    Singh, J.K.2
  • 60
    • 85168251925 scopus 로고    scopus 로고
    • Last Updated: 07/08/2014. USGS, Earth Explorer, Page Last Modified: 11/03/2014.
    • USDA Forest Service, 2014 , Last Updated: 07/08/2014. USGS, Earth Explorer, Page Last Modified: 11/03/2014. http://earthexplorer.usgs.gov/.
    • (2014)
  • 65
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175. 10.1016/S0925-2312(01)00702-0.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1
  • 66
    • 0036330344 scopus 로고    scopus 로고
    • Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data
    • Zhang Y., Pulliainen J., Koponen S., Hallikainen M. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sens. Environ. 2002, 81(2-3):327-336.
    • (2002) Remote Sens. Environ. , vol.81 , Issue.2-3 , pp. 327-336
    • Zhang, Y.1    Pulliainen, J.2    Koponen, S.3    Hallikainen, M.4
  • 67
    • 0038284084 scopus 로고    scopus 로고
    • Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland
    • Zhang Y., Pulliainen J.T., Koponen S.S., Hallikainen M.T. Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans. Geosci. Remote Sens. 2003, 41(3):622-629.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.3 , pp. 622-629
    • Zhang, Y.1    Pulliainen, J.T.2    Koponen, S.S.3    Hallikainen, M.T.4
  • 68
    • 71249164333 scopus 로고    scopus 로고
    • Retreival od total suspended matter conecntration in the Yellow and East China Seas from MODIS imagery
    • Zhang M., Tang J., Song Q., Ding J. Retreival od total suspended matter conecntration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 2010, 114:392-403. 10.1016/j.rse.2009.09.016.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 392-403
    • Zhang, M.1    Tang, J.2    Song, Q.3    Ding, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.