메뉴 건너뛰기




Volumn 10, Issue 6, 1996, Pages 543-566

Financial forecasting using genetic algorithms

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; FINANCIAL DATA PROCESSING; FORECASTING; GENETIC ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION;

EID: 0030285428     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/088395196118425     Document Type: Article
Times cited : (122)

References (59)
  • 2
    • 0000401181 scopus 로고
    • A sequential niche technique for multimodal function optimization
    • Beasley, D., D. R. Bull, and R. R. Martin. 1993. A sequential niche technique for multimodal function optimization. Evolutionary Computation 1 (2): 101-125.
    • (1993) Evolutionary Computation , vol.1 , Issue.2 , pp. 101-125
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 3
    • 0003862635 scopus 로고
    • Intelligent behavior as an adaptation to the task environment
    • (University Microfilms No. 8214966.)
    • Booker, L. B. 1982. Intelligent behavior as an adaptation to the task environment. Dissertation Abstracts International 43(2): 469B. (University Microfilms No. 8214966.)
    • (1982) Dissertation Abstracts International , vol.43 , Issue.2
    • Booker, L.B.1
  • 6
    • 0003871635 scopus 로고
    • An analysis of the behavior of a class of genetic adaptive systems
    • (University Microfilms No. 76-9381.)
    • De Jong, K. A. 1975. An analysis of the behavior of a class of genetic adaptive systems. Dissertation Abstracts International 36(10): 5140B. (University Microfilms No. 76-9381.)
    • (1975) Dissertation Abstracts International , vol.36 , Issue.10
    • De Jong, K.A.1
  • 7
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • De Jong, K. A., W. M. Spears, and D. F. Gordon. 1993. Using genetic algorithms for concept learning. Machine Learning 13(2/3): 161-188.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 161-188
    • De Jong, K.A.1    Spears, W.M.2    Gordon, D.F.3
  • 9
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Fonseca, C. M., and P. J. Fleming. 1995. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1): 1-16.
    • (1995) Evolutionary Computation , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 10
    • 0003644437 scopus 로고
    • Computer-aided gas pipeline optimization using genetic algorithms and rule learning
    • (University Microfilms No. 8402282.)
    • Goldberg, D. E. 1983. Computer-aided gas pipeline optimization using genetic algorithms and rule learning. Dissertation Abstracts International 44(10): 3174B. (University Microfilms No. 8402282.)
    • (1983) Dissertation Abstracts International , vol.44 , Issue.10
    • Goldberg, D.E.1
  • 12
    • 0024561585 scopus 로고
    • A comparative analysis of selection schemes used in genetic algorithms
    • G. J. E. Rawlins, San Mateo, Calif.: Morgan Kaufmann
    • Goldberg, D. E., and K. Deb. 1991. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms, ed, G. J. E. Rawlins, 69-93. San Mateo, Calif.: Morgan Kaufmann.
    • (1991) Foundations of Genetic Algorithms , pp. 69-93
    • Goldberg, D.E.1    Deb, K.2
  • 15
    • 0027696043 scopus 로고
    • Competition-based induction of decision models from examples
    • Greene, D. P., and S. F. Smith. 1993. Competition-based induction of decision models from examples. Machine Learning 13(2/3): 229-257.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 229-257
    • Greene, D.P.1    Smith, S.F.2
  • 16
    • 0001347109 scopus 로고
    • Using coverage as a model building constraint in learning classifier systems
    • Greene, D. P., and S. F. Smith. 1994. Using coverage as a model building constraint in learning classifier systems. Evolutionary Computation 2(1): 67-91.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 67-91
    • Greene, D.P.1    Smith, S.F.2
  • 18
    • 0000556347 scopus 로고
    • Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect
    • Gruau, F., and D. Whitley. 1993. Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect. Evolutionary Computation 1 (3): 213-233.
    • (1993) Evolutionary Computation , vol.1 , Issue.3 , pp. 213-233
    • Gruau, F.1    Whitley, D.2
  • 19
    • 0000746883 scopus 로고
    • Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems
    • R. Michalski, J. Carbonell, and T. Mitchell. San Mateo, Calif.: Morgan Kaufmann
    • Holland, J. H. 1986. Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems. In Machine learning: An artificial intelligence approach, vol. 2, eds, R. Michalski, J. Carbonell, and T. Mitchell. San Mateo, Calif.: Morgan Kaufmann.
    • (1986) Machine Learning: An Artificial Intelligence Approach , vol.2
    • Holland, J.H.1
  • 21
    • 0001666176 scopus 로고
    • Cognitive systems based on adaptive algorithms
    • D. A. Waterman and F. Hayes-Roth, New York: Academic Press
    • Holland, J. H., and J. S. Reitman. 1978. Cognitive systems based on adaptive algorithms. In Pattern-directed inference systems, eds, D. A. Waterman and F. Hayes-Roth, 313-329. New York: Academic Press.
    • (1978) Pattern-Directed Inference Systems , pp. 313-329
    • Holland, J.H.1    Reitman, J.S.2
  • 22
    • 0002941592 scopus 로고
    • Implicit niching in a learning classifier system: Nature’s way
    • Horn, J., D. E. Goldberg, and K. Deb. 1994. Implicit niching in a learning classifier system: Nature’s way. Evolutionary Computation 2(1): 37-66.
    • (1994) Evolutionary Computation , vol.2 , Issue.1 , pp. 37-66
    • Horn, J.1    Goldberg, D.E.2    Deb, K.3
  • 23
    • 0027696178 scopus 로고
    • A knowledge-intensive genetic algorithm for supervised learning
    • Janikow, C. Z. 1993. A knowledge-intensive genetic algorithm for supervised learning. Machine Learning 13(2/3): 189-228.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 189-228
    • Janikow, C.Z.1
  • 28
    • 0002614135 scopus 로고
    • Crowding and preselection revisited
    • R. Manner and B. Manderick, Amsterdam: Elsevier
    • Mahfoud, S. W. 1992. Crowding and preselection revisited. In Parallel problem solving from nature, 2, eds, R. Manner and B. Manderick, 27-36. Amsterdam: Elsevier.
    • (1992) Parallel Problem Solving from Nature , vol.2 , pp. 27-36
    • Mahfoud, S.W.1
  • 30
    • 0003679582 scopus 로고
    • Niching methods for genetic algorithms
    • (University Microfilms No. 9543663.)
    • Mahfoud, S. W. 1995a. Niching methods for genetic algorithms. Dissertation Abstracts International 56(9): 4987B. (University Microfilms No. 9543663.)
    • (1995) Dissertation Abstracts International , vol.56 , Issue.9
    • Mahfoud, S.W.1
  • 31
    • 0001963038 scopus 로고
    • Population size and genetic drift in fitness sharing
    • L. D. Whitley and M. D. Vose, San Francisco, Calif.: Morgan Kaufmann
    • Mahfoud, S. W. 1995b. Population size and genetic drift in fitness sharing. In Foundations of genetic algorithms, vol. 3, eds, L. D. Whitley and M. D. Vose, 185-223. San Francisco, Calif.: Morgan Kaufmann.
    • (1995) Foundations of Genetic Algorithms , vol.3 , pp. 185-223
    • Mahfoud, S.W.1
  • 33
    • 85011210572 scopus 로고
    • Paper presented at the second international workshop on neural networks in the capital markets, Pasadena, Calif
    • Mani, G., and D. Barr. 1994. Stock-specific, non-linear neural net models: The AXON system. Paper presented at the second international workshop on neural networks in the capital markets, Pasadena, Calif.
    • (1994) Stock-Specific, Non-Linear Neural Net Models: The AXON System.
    • Mani, G.1    Barr, D.2
  • 34
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Palo Alto, Calif.: Tioga
    • Michalski, R. S. 1983. A theory and methodology of inductive learning. In Machine learning: An artificial intelligence approach, eds, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. 83-134. Palo Alto, Calif.: Tioga.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R.S.1
  • 35
    • 21544433177 scopus 로고
    • Learning thresholds for expert system rules
    • Montana, D. J. 1990. Learning thresholds for expert system rules. Machine Learning 5(4): 427-450.
    • (1990) Machine Learning , vol.5 , Issue.4 , pp. 427-450
    • Montana, D.J.1
  • 36
    • 0001247330 scopus 로고
    • A genetic learning algorithm for the analysis of complex data
    • Packard, N. H. 1990. A genetic learning algorithm for the analysis of complex data. ComplexSystems 4(5): 543-572.
    • (1990) Complexsystems , vol.4 , Issue.5 , pp. 543-572
    • Packard, N.H.1
  • 38
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1(1): 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 45
    • 0003431366 scopus 로고
    • Some experiments in machine learning using vector evaluated genetic algorithms
    • Vanderbilt University, Nashville. Tenn
    • Schaffer, J. D. 1984. Some experiments in machine learning using vector evaluated genetic algorithms. Doctoral dissertation. Vanderbilt University, Nashville. Tenn.
    • (1984) Doctoral Dissertation
    • Schaffer, J.D.1
  • 48
    • 0009454988 scopus 로고
    • A double-layered learning approach to acquiring rules for classification: Integrating genetic algorithms with similarity-based learning
    • Sikora, R., and M. J. Shaw. 1994. A double-layered learning approach to acquiring rules for classification: Integrating genetic algorithms with similarity-based learning. ORSA Journal on Computing 6(2): 174-187.
    • (1994) ORSA Journal on Computing , vol.6 , Issue.2 , pp. 174-187
    • Sikora, R.1    Shaw, M.J.2
  • 53
    • 0001164493 scopus 로고
    • Shift of bias for inductive concept learning
    • R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Los Altos, Calif.: Morgan Kaufmann
    • Utgoff, P. E. 1986. Shift of bias for inductive concept learning. In Machine learning: An artificial intelligence approach, vol. II, eds, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, 107-148. Los Altos, Calif.: Morgan Kaufmann.
    • (1986) Machine Learning: An Artificial Intelligence Approach , vol.2 , pp. 107-148
    • Utgoff, P.E.1
  • 55
    • 0027701513 scopus 로고
    • Genetic reinforcement learning for neurocontroller problems
    • Whitley, D., S. Dominic, R. Das, and C. W. Anderson. 1993. Genetic reinforcement learning for neurocontroller problems. Machine Learning 13(2/3): 259-284.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 259-284
    • Whitley, D.1    Dominic, S.2    Das, R.3    Anderson, C.W.4
  • 57
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • Whitley, D., T. Starkweather, and C. Bogart. 1990. Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Computing 14: 347-361.
    • (1990) Parallel Computing , vol.14 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 58
    • 0000874753 scopus 로고
    • Classifier systems and the animat problem
    • Wilson, S. W. 1987. Classifier systems and the animat problem. Machine Learning 2(3): 199-228.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 199-228
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.