-
1
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent, part II
-
Caputo M,. Linear models of dissipation whose Q is almost frequency independent, part II. Geophys J Int 1967; 13: 529-539.
-
(1967)
Geophys J Int
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
2
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny I,. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 2002; 5: 367-386.
-
(2002)
Fract Calc Appl Anal
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
4
-
-
0034515585
-
Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux
-
Cushman JH, Ginn TR,. Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour Res 2000; 36: 3763-3766.
-
(2000)
Water Resour Res
, vol.36
, pp. 3763-3766
-
-
Cushman, J.H.1
Ginn, T.R.2
-
5
-
-
33845247896
-
Modeling non-Fickian transport in geological formations as a continuous time random walk
-
22 - 30
-
Berkowitz B, Cortis A, Dentz M,. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 2006; 44: RG2003; 22-30.
-
(2006)
Rev Geophys
, vol.44
, pp. RG2003
-
-
Berkowitz, B.1
Cortis, A.2
Dentz, M.3
-
6
-
-
84934288557
-
On the stability and convergence of the time-fractional variable order telegraph equation
-
Atangana A,. On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys 2015; 293: 104-114.
-
(2015)
J Comput Phys
, vol.293
, pp. 104-114
-
-
Atangana, A.1
-
7
-
-
85051078999
-
A new definition of fractional derivative without singular kernel
-
Caputo M, Fabrizio M,. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 2015; 1: 73-85.
-
(2015)
Progr Fract Differ Appl
, vol.1
, pp. 73-85
-
-
Caputo, M.1
Fabrizio, M.2
-
8
-
-
85017665729
-
Properties of a new fractional derivative without singular kernel
-
Losada J, Nieto JJ,. Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl 2015; 1: 87-92.
-
(2015)
Progr Fract Differ Appl
, vol.1
, pp. 87-92
-
-
Losada, J.1
Nieto, J.J.2
-
9
-
-
84896951515
-
Solutions of the telegraph equations using a fractional calculus approach
-
series A, Bucharest January-February 2014, Bucharest: The Publishing House of the Romanian Academy
-
Gómez Aguilar JF, Baleanu D,. Solutions of the telegraph equations using a fractional calculus approach. In: Proceedings of the Romanian academy, series A, Bucharest, vol. 15, no. 1, January-February 2014, pp. 27-34. Bucharest: The Publishing House of the Romanian Academy.
-
Proceedings of the Romanian Academy
, vol.15
, Issue.1
, pp. 27-34
-
-
Gómez Aguilar, J.F.1
Baleanu, D.2
-
11
-
-
84890890505
-
RLC electrical circuit of non-integer order
-
Gómez F, Rosales J, Guía M,. RLC electrical circuit of non-integer order. Cent Eur J Phys 2013; 11: 1361-1365.
-
(2013)
Cent Eur J Phys
, vol.11
, pp. 1361-1365
-
-
Gómez, F.1
Rosales, J.2
Guía, M.3
-
12
-
-
84934303537
-
On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation
-
in press
-
Atangana A,. On the new fractional derivative and application to nonlinear Fisher'reaction-diffusion equation. Appl Math Comput, in press.
-
Appl Math Comput
-
-
Atangana, A.1
-
13
-
-
68649098514
-
Variable-order fractional differential operators in anomalous diffusion modelling
-
Sun H, Chen W, Chen Y,. Variable-order fractional differential operators in anomalous diffusion modelling. Physica A 2009; 388: 4586-4592.
-
(2009)
Physica A
, vol.388
, pp. 4586-4592
-
-
Sun, H.1
Chen, W.2
Chen, Y.3
-
14
-
-
76449113714
-
Fractional diffusion equations by the Kansa method
-
Chen W, Ye L, Sun H,. Fractional diffusion equations by the Kansa method. Comput Math Appl 2010; 59: 1614-1620.
-
(2010)
Comput Math Appl
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.2
Sun, H.3
-
15
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang XJ, Srivastava HM, He JH,. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys Lett A 2013; 377: 1696-1700.
-
(2013)
Phys Lett A
, vol.377
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
|