메뉴 건너뛰기




Volumn 7, Issue 6, 2015, Pages 1-6

Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel

Author keywords

CaputoFabrizio derivative; Laplace transform; RLC circuit model

Indexed keywords


EID: 84934267826     PISSN: 16878132     EISSN: 16878140     Source Type: Journal    
DOI: 10.1177/1687814015591937     Document Type: Article
Times cited : (144)

References (15)
  • 1
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent, part II
    • Caputo M,. Linear models of dissipation whose Q is almost frequency independent, part II. Geophys J Int 1967; 13: 529-539.
    • (1967) Geophys J Int , vol.13 , pp. 529-539
    • Caputo, M.1
  • 2
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny I,. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 2002; 5: 367-386.
    • (2002) Fract Calc Appl Anal , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 4
    • 0034515585 scopus 로고    scopus 로고
    • Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux
    • Cushman JH, Ginn TR,. Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour Res 2000; 36: 3763-3766.
    • (2000) Water Resour Res , vol.36 , pp. 3763-3766
    • Cushman, J.H.1    Ginn, T.R.2
  • 5
    • 33845247896 scopus 로고    scopus 로고
    • Modeling non-Fickian transport in geological formations as a continuous time random walk
    • 22 - 30
    • Berkowitz B, Cortis A, Dentz M,. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 2006; 44: RG2003; 22-30.
    • (2006) Rev Geophys , vol.44 , pp. RG2003
    • Berkowitz, B.1    Cortis, A.2    Dentz, M.3
  • 6
    • 84934288557 scopus 로고    scopus 로고
    • On the stability and convergence of the time-fractional variable order telegraph equation
    • Atangana A,. On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys 2015; 293: 104-114.
    • (2015) J Comput Phys , vol.293 , pp. 104-114
    • Atangana, A.1
  • 7
    • 85051078999 scopus 로고    scopus 로고
    • A new definition of fractional derivative without singular kernel
    • Caputo M, Fabrizio M,. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 2015; 1: 73-85.
    • (2015) Progr Fract Differ Appl , vol.1 , pp. 73-85
    • Caputo, M.1    Fabrizio, M.2
  • 8
    • 85017665729 scopus 로고    scopus 로고
    • Properties of a new fractional derivative without singular kernel
    • Losada J, Nieto JJ,. Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl 2015; 1: 87-92.
    • (2015) Progr Fract Differ Appl , vol.1 , pp. 87-92
    • Losada, J.1    Nieto, J.J.2
  • 9
    • 84896951515 scopus 로고    scopus 로고
    • Solutions of the telegraph equations using a fractional calculus approach
    • series A, Bucharest January-February 2014, Bucharest: The Publishing House of the Romanian Academy
    • Gómez Aguilar JF, Baleanu D,. Solutions of the telegraph equations using a fractional calculus approach. In: Proceedings of the Romanian academy, series A, Bucharest, vol. 15, no. 1, January-February 2014, pp. 27-34. Bucharest: The Publishing House of the Romanian Academy.
    • Proceedings of the Romanian Academy , vol.15 , Issue.1 , pp. 27-34
    • Gómez Aguilar, J.F.1    Baleanu, D.2
  • 11
    • 84890890505 scopus 로고    scopus 로고
    • RLC electrical circuit of non-integer order
    • Gómez F, Rosales J, Guía M,. RLC electrical circuit of non-integer order. Cent Eur J Phys 2013; 11: 1361-1365.
    • (2013) Cent Eur J Phys , vol.11 , pp. 1361-1365
    • Gómez, F.1    Rosales, J.2    Guía, M.3
  • 12
    • 84934303537 scopus 로고    scopus 로고
    • On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation
    • in press
    • Atangana A,. On the new fractional derivative and application to nonlinear Fisher'reaction-diffusion equation. Appl Math Comput, in press.
    • Appl Math Comput
    • Atangana, A.1
  • 13
    • 68649098514 scopus 로고    scopus 로고
    • Variable-order fractional differential operators in anomalous diffusion modelling
    • Sun H, Chen W, Chen Y,. Variable-order fractional differential operators in anomalous diffusion modelling. Physica A 2009; 388: 4586-4592.
    • (2009) Physica A , vol.388 , pp. 4586-4592
    • Sun, H.1    Chen, W.2    Chen, Y.3
  • 14
    • 76449113714 scopus 로고    scopus 로고
    • Fractional diffusion equations by the Kansa method
    • Chen W, Ye L, Sun H,. Fractional diffusion equations by the Kansa method. Comput Math Appl 2010; 59: 1614-1620.
    • (2010) Comput Math Appl , vol.59 , pp. 1614-1620
    • Chen, W.1    Ye, L.2    Sun, H.3
  • 15
    • 84878016367 scopus 로고    scopus 로고
    • Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
    • Yang XJ, Srivastava HM, He JH,. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys Lett A 2013; 377: 1696-1700.
    • (2013) Phys Lett A , vol.377 , pp. 1696-1700
    • Yang, X.J.1    Srivastava, H.M.2    He, J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.