-
3
-
-
0003598080
-
-
Langhorne, PA, Gordon and Breach Science Publishers
-
S. G. SAMKO, A. A. KILBAS, O. I. MARICHEV, Fractional integrals and derivatives, theory and applications, Langhorne, PA, Gordon and Breach Science Publishers, 1993.
-
(1993)
Fractional Integrals and Derivatives, Theory and Applications
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
5
-
-
65049084831
-
-
Series on Complexity, Nonlinearity and Chaos, World Scientific
-
D. BALEANU, K. DIETHELM, E. SCALAS, J. J. TRUJILLO. Fractional calculus models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012.
-
(2012)
Fractional Calculus Models and Numerical Methods
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
6
-
-
84890890505
-
RLC electrical circuit of non-integer order
-
DOI: 10.2478/s11534-013-0265-6, 2013
-
F. GÓMEZ, J. ROSALES, M. GUÍA, RLC electrical circuit of non-integer order, Cent. Eur. J. Phys, DOI: 10.2478/s11534-013-0265-6, 2013.
-
Cent. Eur. J. Phys
-
-
Gómez, F.1
Rosales, J.2
Guía, M.3
-
7
-
-
84890866146
-
Analysis on the time and frequency domain for the RC electric circuit of fractional order
-
DOI: 10.2478/s11534-013-0236-y
-
M. GUIA, F. GÓMEZ, J. ROSALES. Analysis on the time and frequency domain for the RC electric circuit of fractional order, Cent. Eur. J. Phys., DOI: 10.2478/s11534-013-0236-y, 2013.
-
(2013)
Cent. Eur. J. Phys.
-
-
Guia, M.1
Gómez, F.2
Rosales, J.3
-
8
-
-
0002641421
-
The ramdom walk's guide to anomalous difussion: A fractional dynamics approach
-
R. METZLER, J. KLAFTER, The ramdom walk's guide to anomalous difussion: a fractional dynamics approach, Phys. Rep., 339, pp. 1-77, 2000.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
9
-
-
4043151477
-
The restaurant at the end of random walk: Recent development in description of anomalous transport by fractional dynamics
-
R. METZLER, J. KLAFTER, The restaurant at the end of random walk: recent development in description of anomalous transport by fractional dynamics, J. Phys., A37, pp. R161-R208, 2004.
-
(2004)
J. Phys.
, vol.A37
-
-
Metzler, R.1
Klafter, J.2
-
10
-
-
53149136127
-
-
Berlin, Springer
-
O. P. AGRAWAL, J. A. TENREIRO-MACHADO, I. SABATIER (Eds.), Fractional derivatives and their applications: Nonlinear dynamics, 38, Berlin, Springer, 2004.
-
(2004)
Fractional Derivatives and Their Applications: Nonlinear Dynamics
, vol.38
-
-
Agrawal, O.P.1
Tenreiro-Machado, J.A.2
Sabatier, I.3
-
12
-
-
33845959080
-
-
Berlin, Springer
-
B. J. WEST, M. BOLOGNA, P. GRIGOLINI, Physics of fractional operators, Berlin, Springer, 2003.
-
(2003)
Physics of Fractional Operators
-
-
West, B.J.1
Bologna, M.2
Grigolini, P.3
-
14
-
-
0000930143
-
A new dissipation model based on memory mechanism
-
M. CAPUTO, F. MAINARDI, A new dissipation model based on memory mechanism, Pure and App. Geo., 91, pp. 134-147, 1971.
-
(1971)
Pure and App. Geo.
, vol.91
, pp. 134-147
-
-
Caputo, M.1
Mainardi, F.2
-
15
-
-
9644282238
-
-
University of Kalmar, Rep. No. 940426
-
S. WESTERLUND, Causality, University of Kalmar, Rep. No. 940426, 1994.
-
(1994)
Causality
-
-
Westerlund, S.1
-
17
-
-
85084386480
-
Modeling and simulation of equivalent circuits in description of biological systems - A fractional calculus approach
-
F. GÓMEZ, J. BERNAL, J. ROSALES, T. CÓRDOVA, Modeling and simulation of equivalent circuits in description of biological systems - a fractional calculus approach, J. Electric. Bioimped., 3, pp. 2-11, 2012.
-
(2012)
J. Electric. Bioimped.
, vol.3
, pp. 2-11
-
-
Gómez, F.1
Bernal, J.2
Rosales, J.3
Córdova, T.4
-
18
-
-
84868197956
-
Existence of a periodic mild solution for a nonlinear fractional differential equation
-
A. E. M. HERZALLAH, D. BALEANU, Existence of a periodic mild solution for a nonlinear fractional differential equation, Comput. Math. Appl., 64, pp. 3059-3064, 2012.
-
(2012)
Comput. Math. Appl.
, vol.64
, pp. 3059-3064
-
-
Herzallah, A.E.M.1
Baleanu, D.2
-
19
-
-
84868210932
-
Transient chaos in fractional Bloch equations
-
S. BHALEKAR, V. DAFTARDAR-GEJJI, D. BALEANU, Transient chaos in fractional Bloch equations, Comput. Math. Appl., 64, pp. 3367-3376, 2012.
-
(2012)
Comput. Math. Appl.
, vol.64
, pp. 3367-3376
-
-
Bhalekar, S.1
Daftardar-Gejji, V.2
Baleanu, D.3
-
20
-
-
84878471334
-
Fractional synchronization of chaotic systems with different orders
-
A. RAZMINIA, D. BALEANU, Fractional synchronization of chaotic systems with different orders, Proc. Romanian Acad. A., 13, pp. 314-321, 2012.
-
(2012)
Proc. Romanian Acad. A.
, vol.13
, pp. 314-321
-
-
Razminia, A.1
Baleanu, D.2
-
21
-
-
84877833378
-
Fractional calculus analysis of the cosmic microwave background
-
J. A. TENREIRO MACHADO et al., Fractional calculus analysis of the cosmic microwave background, Rom. Rep. Phys., 65, pp. 316-323, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 316-323
-
-
Tenreiro Machado, J.A.1
-
22
-
-
84878389137
-
Motion of a particle in a resisting medium using fractional calculus approach
-
J. J. ROSALES GARCIA, M. GUIA CALDERON, J. MARTINEZ ORTIZ, D. BALEANU, Motion of a particle in a resisting medium using fractional calculus approach, Proc. Romanian Acad. A, 14, pp. 42-47, 2013.
-
(2013)
Proc. Romanian Acad. A
, vol.14
, pp. 42-47
-
-
Rosales Garcia, J.J.1
Guia Calderon, M.2
Martinez Ortiz, J.3
Baleanu, D.4
-
23
-
-
84878993985
-
Approximate solutions for diffusion equations on Cantor space-time
-
XIAO-JUN YANG et al., Approximate solutions for diffusion equations on Cantor space-time, Proc. Romanian Acad. A, 14, pp. 127-133, 2013.
-
(2013)
Proc. Romanian Acad. A
, vol.14
, pp. 127-133
-
-
Yang, X.1
-
24
-
-
84878434215
-
Mean square solutions of second-order random differential equations by using homotopy analysis method
-
A. K. GOLMANKHANEH, N. A. PORGHOVEH, D. BALEANU, Mean square solutions of second-order random differential equations by using homotopy analysis method, Rom. Rep. Phys., 65, pp. 350-362, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 350-362
-
-
Golmankhaneh, A.K.1
Porghoveh, N.A.2
Baleanu, D.3
-
25
-
-
84879528675
-
Fractional Euler-Lagrange equation of Caldirola-Kanai oscillator
-
D. BALEANU, J. H. ASAD, I. PETRAS, S. ELAGAN, A. BILGEN, Fractional Euler-Lagrange equation of Caldirola-Kanai oscillator, Rom. Rep. Phys., 64, pp.1171-1177, 2012.
-
(2012)
Rom. Rep. Phys.
, vol.64
, pp. 1171-1177
-
-
Baleanu, D.1
Asad, J.H.2
Petras, I.3
Elagan, S.4
Bilgen, A.5
-
26
-
-
84869470751
-
Fractional-order two-electric pendulum
-
D. BALEANU, J. H. ASAD, I. PETRAS, Fractional-order two-electric pendulum, Rom. Rep. Phys., 64, pp. 907-914, 2012.
-
(2012)
Rom. Rep. Phys.
, vol.64
, pp. 907-914
-
-
Baleanu, D.1
Asad, J.H.2
Petras, I.3
-
27
-
-
84877806817
-
Newtonian mechanics on fractals subset of real-line
-
A. K. GOLMANKHANEH et al., Newtonian mechanics on fractals subset of real-line, Rom. Rep. Phys., 65, pp. 84-93, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 84-93
-
-
Golmankhaneh, A.K.1
-
28
-
-
84877270201
-
Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis
-
D. ROSTAMY, M. ALIPOUR, H. JAFARI, D. BALEANU, Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis, Rom. Rep. Phys., 65, pp. 334-349, 2013.
-
(2013)
Rom. Rep. Phys.
, vol.65
, pp. 334-349
-
-
Rostamy, D.1
Alipour, M.2
Jafari, H.3
Baleanu, D.4
-
29
-
-
84875677289
-
Fractional Caputo heat equation within the double Laplace transform
-
A. M. O. ANWAR, F. JARAD, D. BALEANU, F. AYAZ, Fractional Caputo heat equation within the double Laplace transform, Rom. J. Phys., 58, pp. 15-22, 2013.
-
(2013)
Rom. J. Phys.
, vol.58
, pp. 15-22
-
-
Anwar, A.M.O.1
Jarad, F.2
Baleanu, D.3
Ayaz, F.4
-
30
-
-
0036953671
-
Fractional telegraph equations
-
R. C. CASCAVAL, E. C. ECKSTEIN, C. L. FROTA, J. A. GOLDSTEIN, Fractional telegraph equations, J. Math. Anal. Appl., 276, pp. 145-159, 2002.
-
(2002)
J. Math. Anal. Appl.
, vol.276
, pp. 145-159
-
-
Cascaval, R.C.1
Eckstein, E.C.2
Frota, C.L.3
Goldstein, J.A.4
-
31
-
-
0742323831
-
Time-fractional telegraph equations and telegraph processes with brownian time
-
E. ORSINGHER, L. BEGHIN, Time-fractional telegraph equations and telegraph processes with brownian time, Probab. Theor. Rel., 128, pp. 141-160, 2004.
-
(2004)
Probab. Theor. Rel.
, vol.128
, pp. 141-160
-
-
Orsingher, E.1
Beghin, L.2
-
32
-
-
34848822538
-
Analytical solution for the time-fractional telegraph equation by the method of separating variables
-
J. CHEN, F. LIU, V. ANH, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338, pp. 1364-1377, 2008.
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364-1377
-
-
Chen, J.1
Liu, F.2
Anh, V.3
-
33
-
-
0037254447
-
The space-fractional telegraph equation and the related fractional telegraph process
-
E. ORSINGHER, X. ZHAO, The space-fractional telegraph equation and the related fractional telegraph process, Chin. Ann. Math. Ser. B, 24, pp. 45-56, 2003.
-
(2003)
Chin. Ann. Math. Ser. B
, vol.24
, pp. 45-56
-
-
Orsingher, E.1
Zhao, X.2
-
34
-
-
27144506208
-
Analytic and approximate solutions of the space-and time-fractional telegraph equations
-
S. MOMANI, Analytic and approximate solutions of the space-and time-fractional telegraph equations, Appl. Math. Com., 170, pp. 1126-1134, 2005.
-
(2005)
Appl. Math. Com.
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
35
-
-
41549101458
-
Differentiation to fractional orders and the fractional telegraph equation
-
Article ID 033505
-
R. F. CAMARGO, A. O. CHIACCHIO, E. CAPELAS DE OLIVEIRA, Differentiation to fractional orders and the fractional telegraph equation, J. Math. Phys., 49, Article ID 033505, 2008.
-
(2008)
J. Math. Phys.
, vol.49
-
-
Camargo, R.F.1
Chiacchio, A.O.2
De Oliveira, E.C.3
-
36
-
-
78449236821
-
Analytical solution for the time-fractional telegraph equation
-
Article ID 890158, 2009
-
F. HUANG, Analytical solution for the time-fractional telegraph equation, J. Appl. Math., 2009, Article ID 890158, 2009.
-
(2009)
J. Appl. Math.
-
-
Huang, F.1
-
37
-
-
84867455218
-
Fractional mechanical oscillators
-
J. F. GÓMEZ-AGUILAR, J. J. ROSALES-GARCÍA, J. J. BERNAL-ALVARADO, T. CÓRDOVA-FRAGA, R. GUZMÁNCABRERA, Fractional mechanical oscillators, Rev. Mex. Fís, 58, pp. 348-352, 2012.
-
(2012)
Rev. Mex. Fís
, vol.58
, pp. 348-352
-
-
Gómez-Aguilar, J.F.1
Rosales-García, J.J.2
Bernal-Alvarado, J.J.3
Córdova-Fraga, T.4
Guzmáncabrera, R.5
-
38
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
I. PODLUBNY, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, pp. 367-386, 2002.
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
39
-
-
0032136257
-
Physical and geometrical interpretation of fractional operators
-
M. MOSHREFI-TORBATI, J.K. HAMMOND, Physical and geometrical interpretation of fractional operators, J. Franklin Inst., 335 B, pp. 1077-1086, 1998.
-
(1998)
J. Franklin Inst.
, vol.335 B
, pp. 1077-1086
-
-
Moshrefi-Torbati, M.1
Hammond, J.K.2
|