메뉴 건너뛰기




Volumn 293, Issue , 2015, Pages 104-114

On the stability and convergence of the time-fractional variable order telegraph equation

Author keywords

Convergence; Crank Nicholson scheme; Fractional variable order derivative; Stability; Telegraph equation

Indexed keywords

COMPUTATIONAL METHODS;

EID: 84934288557     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2014.12.043     Document Type: Article
Times cited : (133)

References (43)
  • 1
    • 0010073424 scopus 로고
    • Fractional integration and differentiation of variable order
    • Samko S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21:213-236.
    • (1995) Anal. Math. , vol.21 , pp. 213-236
    • Samko, S.G.1
  • 2
    • 78049352592 scopus 로고    scopus 로고
    • Variable-order fractional derivatives and their numerical approximations
    • Valério D., Sá da Costa J. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91(3):470-483.
    • (2011) Signal Process. , vol.91 , Issue.3 , pp. 470-483
    • Valério, D.1    Sá da Costa, J.2
  • 4
    • 33744818478 scopus 로고    scopus 로고
    • Accuracy estimates for computer algebra systems IVP solvers
    • Joubert S.V., Greeff J.C. Accuracy estimates for computer algebra systems IVP solvers. South Afr. J. Sci. 2006, 102:46-50.
    • (2006) South Afr. J. Sci. , vol.102 , pp. 46-50
    • Joubert, S.V.1    Greeff, J.C.2
  • 8
    • 0037254447 scopus 로고    scopus 로고
    • The space fractional telegraph equation and the related telegraph process
    • Orssingher E., Zhao X. The space fractional telegraph equation and the related telegraph process. Chin. Ann. Math. 2003, 24B:45-56.
    • (2003) Chin. Ann. Math. , vol.24 B , pp. 45-56
    • Orssingher, E.1    Zhao, X.2
  • 9
    • 34848822538 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation by the method of separating variables
    • Chen J., Liu F., Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 2008, 338:1364-1377.
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1364-1377
    • Chen, J.1    Liu, F.2    Anh, V.3
  • 10
    • 0742323831 scopus 로고    scopus 로고
    • Time fractional telegraph equation and telegraph process with brownian time
    • Orsingher E., Beghin L. Time fractional telegraph equation and telegraph process with brownian time. Probab. Theory Relat. Fields 2004, 128:141-160.
    • (2004) Probab. Theory Relat. Fields , vol.128 , pp. 141-160
    • Orsingher, E.1    Beghin, L.2
  • 11
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space and time fractional telegraph equations
    • Momani S. Analytic and approximate solutions of the space and time fractional telegraph equations. Appl. Math. Comput. 2005, 170:1126-1134.
    • (2005) Appl. Math. Comput. , vol.170 , pp. 1126-1134
    • Momani, S.1
  • 12
    • 79251549814 scopus 로고    scopus 로고
    • The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
    • Dehghan M., Yousefi S.A., Lotfi A. The use of He's variational iteration method for solving the telegraph and fractional telegraph equations. Int. J. Numer. Methods Biomed. Eng. 2011, 27:219-231.
    • (2011) Int. J. Numer. Methods Biomed. Eng. , vol.27 , pp. 219-231
    • Dehghan, M.1    Yousefi, S.A.2    Lotfi, A.3
  • 13
    • 52349084738 scopus 로고    scopus 로고
    • Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
    • Pedro H.T.C., Kobayashi M.H., Pereira J.M.C., Coimbra C.F.M. Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 2008, 14:1569-1672.
    • (2008) J. Vib. Control , vol.14 , pp. 1569-1672
    • Pedro, H.T.C.1    Kobayashi, M.H.2    Pereira, J.M.C.3    Coimbra, C.F.M.4
  • 14
    • 84862843990 scopus 로고    scopus 로고
    • On the selection and meaning of variable order operators for dynamic modelling
    • 16 pp.
    • Ramirez L.E.S., Coimbra C.F.M. On the selection and meaning of variable order operators for dynamic modelling. Int. J. Differ. Equ. 2010, 2010:846107. 16 pp.
    • (2010) Int. J. Differ. Equ. , vol.2010 , pp. 846107
    • Ramirez, L.E.S.1    Coimbra, C.F.M.2
  • 15
    • 79957994339 scopus 로고    scopus 로고
    • On the variable order dynamics of the nonlinear wake caused by a sedimenting particle
    • Ramirez L.E.S., Coimbra C.F.M. On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D 2011, 240:1111-1118.
    • (2011) Physica D , vol.240 , pp. 1111-1118
    • Ramirez, L.E.S.1    Coimbra, C.F.M.2
  • 16
    • 0011189482 scopus 로고
    • Fractional integration operator of a variable order in the Holder spaces H_(x)
    • Ross B., Samko S.G. Fractional integration operator of a variable order in the Holder spaces H_(x). Int. J. Math. Math. Sci. 1995, 18:777-788.
    • (1995) Int. J. Math. Math. Sci. , vol.18 , pp. 777-788
    • Ross, B.1    Samko, S.G.2
  • 17
    • 74349105778 scopus 로고    scopus 로고
    • Variable order differential equations and diffusion with changing modes
    • Umarov S., Steinberg S. Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend. 2009, 28:431-450.
    • (2009) Z. Anal. Anwend. , vol.28 , pp. 431-450
    • Umarov, S.1    Steinberg, S.2
  • 18
    • 38349041965 scopus 로고    scopus 로고
    • Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
    • Magin R.L., Abdullah O., Baleanu D., Zhou X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 2008, 190:255-270.
    • (2008) J. Magn. Reson. , vol.190 , pp. 255-270
    • Magin, R.L.1    Abdullah, O.2    Baleanu, D.3    Zhou, X.J.4
  • 20
    • 0036650957 scopus 로고    scopus 로고
    • Variable order and distributed order fractional operators
    • Lorenzo C.F., Hartley T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29:57-98.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 21
    • 84903939649 scopus 로고    scopus 로고
    • A mixed finite element method for a time-fractional fourth-order partial differential equation
    • Liu Yang, Fang Zhichao, Li Hong, He Siriguleng A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 2014, 243:703-717.
    • (2014) Appl. Math. Comput. , vol.243 , pp. 703-717
    • Liu, Y.1    Fang, Z.2    Li, H.3    He, S.4
  • 22
    • 84886463664 scopus 로고    scopus 로고
    • Numerical solution of a kind of fractional parabolic equations via two difference schemes
    • 8 pp.
    • Atangana Abdon, Baleanu Dumitru Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 2013, 2013:828764. 8 pp.
    • (2013) Abstr. Appl. Anal. , vol.2013 , pp. 828764
    • Atangana, A.1    Baleanu, D.2
  • 23
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection dispersion equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection dispersion equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 24
    • 68949098580 scopus 로고    scopus 로고
    • A finite difference method for fractional partial differential equation
    • Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215:524-529.
    • (2009) Appl. Math. Comput. , vol.215 , pp. 524-529
    • Zhang, Y.1
  • 25
    • 31744438550 scopus 로고    scopus 로고
    • A second order accurate numerical approximation for the fractional diffusion equation
    • Tadjeran C., Meerschaert M.M., Scheffler H.P. A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 26
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 27
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations
    • Yuste S.B., Acedo L. An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 28
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus II: partial fractional differential equations
    • Podlubny I., Chechkin A., Skovranek T., Chen Y.Q., Vinagre Jara B.M. Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 2009, 228:3137-3153.
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.Q.4    Vinagre Jara, B.M.5
  • 29
    • 79954926078 scopus 로고    scopus 로고
    • On the numerical solution of space time fractional diffusion models
    • Hanert E. On the numerical solution of space time fractional diffusion models. Comput. Fluids 2011, 46:33-39.
    • (2011) Comput. Fluids , vol.46 , pp. 33-39
    • Hanert, E.1
  • 30
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • Zhuang P., Liu F., Anh V., Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 31
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
    • Lin R., Liu F., Anh V., Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 2009, 212:435-445.
    • (2009) Appl. Math. Comput. , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 32
    • 84953600891 scopus 로고
    • A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type
    • Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Philol. Soc. 1947, 43:50-67.
    • (1947) Proc. Camb. Philol. Soc. , vol.43 , pp. 50-67
    • Crank, J.1    Nicolson, P.2
  • 33
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • Diethelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36:31-52.
    • (2004) Numer. Algorithms , vol.36 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 34
    • 69749102394 scopus 로고    scopus 로고
    • On the fractional Adams method
    • Li C.P., Tao C.X. On the fractional Adams method. Comput. Math. Appl. 2009, 58:1573-1588.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1573-1588
    • Li, C.P.1    Tao, C.X.2
  • 35
    • 2942565724 scopus 로고    scopus 로고
    • Filtering using variable order vertical derivatives
    • Cooper G.R.J., Cowan D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30:455-459.
    • (2004) Comput. Geosci. , vol.30 , pp. 455-459
    • Cooper, G.R.J.1    Cowan, D.R.2
  • 36
    • 33745698055 scopus 로고    scopus 로고
    • Design of variable and adaptive fractional order FIR differentiators
    • Tseng C.-C. Design of variable and adaptive fractional order FIR differentiators. Signal Process. 2006, 86:2554-2566.
    • (2006) Signal Process. , vol.86 , pp. 2554-2566
    • Tseng, C.-C.1
  • 37
    • 74349105778 scopus 로고    scopus 로고
    • Variable order differential equations and diffusion with changing modes
    • Umarov S., Steinberg S. Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend. 2009, 28:431-450.
    • (2009) Z. Anal. Anwend. , vol.28 , pp. 431-450
    • Umarov, S.1    Steinberg, S.2
  • 38
    • 77951208473 scopus 로고    scopus 로고
    • Fractional differential models for anomalous diffusion
    • Sun H.G., Chen W., Li C., Chen Y.Q. Fractional differential models for anomalous diffusion. Physica A 2010, 389:2719-2724.
    • (2010) Physica A , vol.389 , pp. 2719-2724
    • Sun, H.G.1    Chen, W.2    Li, C.3    Chen, Y.Q.4
  • 39
    • 84855397470 scopus 로고    scopus 로고
    • An operator-difference method for telegraph equations arising in transmission lines
    • 17 pp.
    • Koksal Mehmet Emir An operator-difference method for telegraph equations arising in transmission lines. Discrete Dyn. Nat. Soc. 2011, 2011:561015. 17 pp.
    • (2011) Discrete Dyn. Nat. Soc. , vol.2011 , pp. 561015
    • Koksal, M.E.1
  • 40
    • 79953691444 scopus 로고    scopus 로고
    • A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems
    • Sun H.G., Chen W., Wei H., Chen Y.Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193:185-192.
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , pp. 185-192
    • Sun, H.G.1    Chen, W.2    Wei, H.3    Chen, Y.Q.4
  • 41
    • 56049113704 scopus 로고    scopus 로고
    • An iterative method for the design of variable fractional-order FIR differintegrators
    • Shyu J.-J., Pei S.-C., Chan C.-H. An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process. 2009, 89:320-327.
    • (2009) Signal Process. , vol.89 , pp. 320-327
    • Shyu, J.-J.1    Pei, S.-C.2    Chan, C.-H.3
  • 42
    • 0346897985 scopus 로고    scopus 로고
    • Mechanics with variable-order differential operators
    • Coimbra C. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12(11-12):692-703.
    • (2003) Ann. Phys. , vol.12 , Issue.11-12 , pp. 692-703
    • Coimbra, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.