-
1
-
-
0010073424
-
Fractional integration and differentiation of variable order
-
Samko S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21:213-236.
-
(1995)
Anal. Math.
, vol.21
, pp. 213-236
-
-
Samko, S.G.1
-
2
-
-
78049352592
-
Variable-order fractional derivatives and their numerical approximations
-
Valério D., Sá da Costa J. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91(3):470-483.
-
(2011)
Signal Process.
, vol.91
, Issue.3
, pp. 470-483
-
-
Valério, D.1
Sá da Costa, J.2
-
4
-
-
33744818478
-
Accuracy estimates for computer algebra systems IVP solvers
-
Joubert S.V., Greeff J.C. Accuracy estimates for computer algebra systems IVP solvers. South Afr. J. Sci. 2006, 102:46-50.
-
(2006)
South Afr. J. Sci.
, vol.102
, pp. 46-50
-
-
Joubert, S.V.1
Greeff, J.C.2
-
7
-
-
0036953671
-
Fractional telegraph equations
-
Cascaval R.C., Eckstein E.C., Frota L., Goldstein J.A. Fractional telegraph equations. J. Math. Anal. Appl. 2002, 276:145-159.
-
(2002)
J. Math. Anal. Appl.
, vol.276
, pp. 145-159
-
-
Cascaval, R.C.1
Eckstein, E.C.2
Frota, L.3
Goldstein, J.A.4
-
8
-
-
0037254447
-
The space fractional telegraph equation and the related telegraph process
-
Orssingher E., Zhao X. The space fractional telegraph equation and the related telegraph process. Chin. Ann. Math. 2003, 24B:45-56.
-
(2003)
Chin. Ann. Math.
, vol.24 B
, pp. 45-56
-
-
Orssingher, E.1
Zhao, X.2
-
9
-
-
34848822538
-
Analytical solution for the time-fractional telegraph equation by the method of separating variables
-
Chen J., Liu F., Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 2008, 338:1364-1377.
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364-1377
-
-
Chen, J.1
Liu, F.2
Anh, V.3
-
10
-
-
0742323831
-
Time fractional telegraph equation and telegraph process with brownian time
-
Orsingher E., Beghin L. Time fractional telegraph equation and telegraph process with brownian time. Probab. Theory Relat. Fields 2004, 128:141-160.
-
(2004)
Probab. Theory Relat. Fields
, vol.128
, pp. 141-160
-
-
Orsingher, E.1
Beghin, L.2
-
11
-
-
27144506208
-
Analytic and approximate solutions of the space and time fractional telegraph equations
-
Momani S. Analytic and approximate solutions of the space and time fractional telegraph equations. Appl. Math. Comput. 2005, 170:1126-1134.
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
12
-
-
79251549814
-
The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
-
Dehghan M., Yousefi S.A., Lotfi A. The use of He's variational iteration method for solving the telegraph and fractional telegraph equations. Int. J. Numer. Methods Biomed. Eng. 2011, 27:219-231.
-
(2011)
Int. J. Numer. Methods Biomed. Eng.
, vol.27
, pp. 219-231
-
-
Dehghan, M.1
Yousefi, S.A.2
Lotfi, A.3
-
13
-
-
52349084738
-
Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
-
Pedro H.T.C., Kobayashi M.H., Pereira J.M.C., Coimbra C.F.M. Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 2008, 14:1569-1672.
-
(2008)
J. Vib. Control
, vol.14
, pp. 1569-1672
-
-
Pedro, H.T.C.1
Kobayashi, M.H.2
Pereira, J.M.C.3
Coimbra, C.F.M.4
-
14
-
-
84862843990
-
On the selection and meaning of variable order operators for dynamic modelling
-
16 pp.
-
Ramirez L.E.S., Coimbra C.F.M. On the selection and meaning of variable order operators for dynamic modelling. Int. J. Differ. Equ. 2010, 2010:846107. 16 pp.
-
(2010)
Int. J. Differ. Equ.
, vol.2010
, pp. 846107
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
15
-
-
79957994339
-
On the variable order dynamics of the nonlinear wake caused by a sedimenting particle
-
Ramirez L.E.S., Coimbra C.F.M. On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D 2011, 240:1111-1118.
-
(2011)
Physica D
, vol.240
, pp. 1111-1118
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
16
-
-
0011189482
-
Fractional integration operator of a variable order in the Holder spaces H_(x)
-
Ross B., Samko S.G. Fractional integration operator of a variable order in the Holder spaces H_(x). Int. J. Math. Math. Sci. 1995, 18:777-788.
-
(1995)
Int. J. Math. Math. Sci.
, vol.18
, pp. 777-788
-
-
Ross, B.1
Samko, S.G.2
-
17
-
-
74349105778
-
Variable order differential equations and diffusion with changing modes
-
Umarov S., Steinberg S. Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend. 2009, 28:431-450.
-
(2009)
Z. Anal. Anwend.
, vol.28
, pp. 431-450
-
-
Umarov, S.1
Steinberg, S.2
-
18
-
-
38349041965
-
Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
-
Magin R.L., Abdullah O., Baleanu D., Zhou X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 2008, 190:255-270.
-
(2008)
J. Magn. Reson.
, vol.190
, pp. 255-270
-
-
Magin, R.L.1
Abdullah, O.2
Baleanu, D.3
Zhou, X.J.4
-
20
-
-
0036650957
-
Variable order and distributed order fractional operators
-
Lorenzo C.F., Hartley T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29:57-98.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
21
-
-
84903939649
-
A mixed finite element method for a time-fractional fourth-order partial differential equation
-
Liu Yang, Fang Zhichao, Li Hong, He Siriguleng A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 2014, 243:703-717.
-
(2014)
Appl. Math. Comput.
, vol.243
, pp. 703-717
-
-
Liu, Y.1
Fang, Z.2
Li, H.3
He, S.4
-
22
-
-
84886463664
-
Numerical solution of a kind of fractional parabolic equations via two difference schemes
-
8 pp.
-
Atangana Abdon, Baleanu Dumitru Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 2013, 2013:828764. 8 pp.
-
(2013)
Abstr. Appl. Anal.
, vol.2013
, pp. 828764
-
-
Atangana, A.1
Baleanu, D.2
-
23
-
-
4444368867
-
Finite difference approximations for fractional advection dispersion equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection dispersion equations. J. Comput. Appl. Math. 2004, 172:65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
24
-
-
68949098580
-
A finite difference method for fractional partial differential equation
-
Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215:524-529.
-
(2009)
Appl. Math. Comput.
, vol.215
, pp. 524-529
-
-
Zhang, Y.1
-
25
-
-
31744438550
-
A second order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler H.P. A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
26
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
27
-
-
25444472344
-
An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
28
-
-
61349186917
-
Matrix approach to discrete fractional calculus II: partial fractional differential equations
-
Podlubny I., Chechkin A., Skovranek T., Chen Y.Q., Vinagre Jara B.M. Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 2009, 228:3137-3153.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.Q.4
Vinagre Jara, B.M.5
-
29
-
-
79954926078
-
On the numerical solution of space time fractional diffusion models
-
Hanert E. On the numerical solution of space time fractional diffusion models. Comput. Fluids 2011, 46:33-39.
-
(2011)
Comput. Fluids
, vol.46
, pp. 33-39
-
-
Hanert, E.1
-
30
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang P., Liu F., Anh V., Turner I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
31
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin R., Liu F., Anh V., Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 2009, 212:435-445.
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
32
-
-
84953600891
-
A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type
-
Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Philol. Soc. 1947, 43:50-67.
-
(1947)
Proc. Camb. Philol. Soc.
, vol.43
, pp. 50-67
-
-
Crank, J.1
Nicolson, P.2
-
33
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
Diethelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36:31-52.
-
(2004)
Numer. Algorithms
, vol.36
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
34
-
-
69749102394
-
On the fractional Adams method
-
Li C.P., Tao C.X. On the fractional Adams method. Comput. Math. Appl. 2009, 58:1573-1588.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 1573-1588
-
-
Li, C.P.1
Tao, C.X.2
-
35
-
-
2942565724
-
Filtering using variable order vertical derivatives
-
Cooper G.R.J., Cowan D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30:455-459.
-
(2004)
Comput. Geosci.
, vol.30
, pp. 455-459
-
-
Cooper, G.R.J.1
Cowan, D.R.2
-
36
-
-
33745698055
-
Design of variable and adaptive fractional order FIR differentiators
-
Tseng C.-C. Design of variable and adaptive fractional order FIR differentiators. Signal Process. 2006, 86:2554-2566.
-
(2006)
Signal Process.
, vol.86
, pp. 2554-2566
-
-
Tseng, C.-C.1
-
37
-
-
74349105778
-
Variable order differential equations and diffusion with changing modes
-
Umarov S., Steinberg S. Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend. 2009, 28:431-450.
-
(2009)
Z. Anal. Anwend.
, vol.28
, pp. 431-450
-
-
Umarov, S.1
Steinberg, S.2
-
38
-
-
77951208473
-
Fractional differential models for anomalous diffusion
-
Sun H.G., Chen W., Li C., Chen Y.Q. Fractional differential models for anomalous diffusion. Physica A 2010, 389:2719-2724.
-
(2010)
Physica A
, vol.389
, pp. 2719-2724
-
-
Sun, H.G.1
Chen, W.2
Li, C.3
Chen, Y.Q.4
-
39
-
-
84855397470
-
An operator-difference method for telegraph equations arising in transmission lines
-
17 pp.
-
Koksal Mehmet Emir An operator-difference method for telegraph equations arising in transmission lines. Discrete Dyn. Nat. Soc. 2011, 2011:561015. 17 pp.
-
(2011)
Discrete Dyn. Nat. Soc.
, vol.2011
, pp. 561015
-
-
Koksal, M.E.1
-
40
-
-
79953691444
-
A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems
-
Sun H.G., Chen W., Wei H., Chen Y.Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193:185-192.
-
(2011)
Eur. Phys. J. Spec. Top.
, vol.193
, pp. 185-192
-
-
Sun, H.G.1
Chen, W.2
Wei, H.3
Chen, Y.Q.4
-
41
-
-
56049113704
-
An iterative method for the design of variable fractional-order FIR differintegrators
-
Shyu J.-J., Pei S.-C., Chan C.-H. An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process. 2009, 89:320-327.
-
(2009)
Signal Process.
, vol.89
, pp. 320-327
-
-
Shyu, J.-J.1
Pei, S.-C.2
Chan, C.-H.3
-
42
-
-
0346897985
-
Mechanics with variable-order differential operators
-
Coimbra C. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12(11-12):692-703.
-
(2003)
Ann. Phys.
, vol.12
, Issue.11-12
, pp. 692-703
-
-
Coimbra, C.1
|