-
1
-
-
46749115463
-
Myocardial tissue engineering: The extracellular matrix
-
PID: 18502661
-
Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery,34, 229–241.
-
(2008)
European Journal of Cardio-Thoracic Surgery
, vol.34
, pp. 229-241
-
-
Akhyari, P.1
Kamiya, H.2
Haverich, A.3
Karck, M.4
Lichtenberg, A.5
-
2
-
-
74249083196
-
Tracheal allotransplantation after withdrawal of immunosuppressive therapy
-
COI: 1:CAS:528:DC%2BC3cXnsVGkug%3D%3D, PID: 20071703
-
Delaere, P., Vranckx, J., Verleden, G., de Leyn, P., van Raemdonck, D., & Leuven Tracheal Transplant Group. (2010). Tracheal allotransplantation after withdrawal of immunosuppressive therapy. New England Journal of Medicine,362, 138–145.
-
(2010)
New England Journal of Medicine
, vol.362
, pp. 138-145
-
-
Delaere, P.1
Vranckx, J.2
Verleden, G.3
de Leyn, P.4
van Raemdonck, D.5
Leuven Tracheal Transplant Group6
-
3
-
-
84896544540
-
Tissue engineering airway mucosa: A systematic review
-
PID: 24129819
-
Hamilton, N., Bullock, A. J., Macneil, S., Janes, S. M., & Birchall, M. (2014). Tissue engineering airway mucosa: A systematic review. Laryngoscope,124, 961–968.
-
(2014)
Laryngoscope
, vol.124
, pp. 961-968
-
-
Hamilton, N.1
Bullock, A.J.2
Macneil, S.3
Janes, S.M.4
Birchall, M.5
-
4
-
-
57349176894
-
Clinical transplantation of a tissue-engineered airway
-
PID: 19022496
-
Macchiarini, P., Jungebluth, P., Go, T., Asnaghi, M. A., Rees, L. E., Cogan, T. A., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet,372, 2023–2030.
-
(2008)
Lancet
, vol.372
, pp. 2023-2030
-
-
Macchiarini, P.1
Jungebluth, P.2
Go, T.3
Asnaghi, M.A.4
Rees, L.E.5
Cogan, T.A.6
Dodson, A.7
Martorell, J.8
Bellini, S.9
Parnigotto, P.P.10
Dickinson, S.C.11
Hollander, A.P.12
Mantero, S.13
Conconi, M.T.14
Birchall, M.A.15
-
5
-
-
66249146049
-
Complexity in biomaterials for tissue engineering
-
COI: 1:CAS:528:DC%2BD1MXmtFemsLw%3D, PID: 19458646
-
Place, E. S., Evans, N. D., & Stevens, M. M. (2009). Complexity in biomaterials for tissue engineering. Nature Materials,8, 457–470.
-
(2009)
Nature Materials
, vol.8
, pp. 457-470
-
-
Place, E.S.1
Evans, N.D.2
Stevens, M.M.3
-
6
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
-
Billiet, T., Vandenhaute, M., Schelfhout, J., van Vlierberghe, S., & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials,33, 6020–6041.
-
(2012)
Biomaterials
, vol.33
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
van Vlierberghe, S.4
Dubruel, P.5
-
7
-
-
84856721133
-
Solid freeform fabrication technology applied to tissue engineering with various biomaterials
-
COI: 1:CAS:528:DC%2BC38Xos1Squg%3D%3D
-
Seol, Y. J., Kang, T. Y., & Cho, D. W. (2012). Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter,8, 1730–1735.
-
(2012)
Soft Matter
, vol.8
, pp. 1730-1735
-
-
Seol, Y.J.1
Kang, T.Y.2
Cho, D.W.3
-
8
-
-
0003465262
-
Apparatus for production of three-dimensional objects by stereolithography. GOOGLE PATENTS
-
Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. GOOGLE PATENTS. US 4575330 A.
-
(1986)
US 4575330 A
-
-
Hull, C.W.1
-
9
-
-
78650301445
-
Biomatrices and biomaterials for future developments of bioprinting and biofabrication
-
COI: 1:STN:280:DC%2BC3cjovVWisA%3D%3D, PID: 20811125
-
Nakamura, M., Iwanaga, S., Henmi, C., Arai, K., & Nishiyama, Y. (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication,2, 014110.
-
(2010)
Biofabrication
, vol.2
, pp. 014110
-
-
Nakamura, M.1
Iwanaga, S.2
Henmi, C.3
Arai, K.4
Nishiyama, Y.5
-
10
-
-
84905725612
-
3d bioprinting of tissues and organs
-
COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
-
Murphy, S. V., & Atala, A. (2014). 3d bioprinting of tissues and organs. Nature Biotechnology,32, 773–785.
-
(2014)
Nature Biotechnology
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
11
-
-
84907331566
-
Bioprinting technology and its applications
-
PID: 25061217
-
Seol, Y. J., Kang, H. W., Lee, S. J., Atala, A., & Yoo, J. J. (2014). Bioprinting technology and its applications. European Journal of Cardio-Thoracic Surgery,46, 342–348.
-
(2014)
European Journal of Cardio-Thoracic Surgery
, vol.46
, pp. 342-348
-
-
Seol, Y.J.1
Kang, H.W.2
Lee, S.J.3
Atala, A.4
Yoo, J.J.5
-
12
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
COI: 1:CAS:528:DC%2BD1cXltFCmtLk%3D, PID: 18428020
-
Peltola, S. M., Melchels, F. P., Grijpma, D. W., & Kellomaki, M. (2008). A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine,40, 268–280.
-
(2008)
Annals of Medicine
, vol.40
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.2
Grijpma, D.W.3
Kellomaki, M.4
-
13
-
-
80053384750
-
Organ printing: From bioprinter to organ biofabrication line
-
COI: 1:CAS:528:DC%2BC3MXht1Kmt7nO, PID: 21419621
-
Mironov, V., Kasyanov, V., & Markwald, R. R. (2011). Organ printing: From bioprinter to organ biofabrication line. Current Opinion in Biotechnology,22, 667–673.
-
(2011)
Current Opinion in Biotechnology
, vol.22
, pp. 667-673
-
-
Mironov, V.1
Kasyanov, V.2
Markwald, R.R.3
-
14
-
-
47049105930
-
High-throughput production of single-cell microparticles using an inkjet printing technology
-
Xu, T., Kincaid, H., Atala, A., & Yoo, J. J. (2008). High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering,130, 021017.
-
(2008)
Journal of Manufacturing Science and Engineering
, vol.130
, pp. 021017
-
-
Xu, T.1
Kincaid, H.2
Atala, A.3
Yoo, J.J.4
-
15
-
-
33751182499
-
Application of inkjet printing to tissue engineering
-
COI: 1:CAS:528:DC%2BD28XhtFartrvK, PID: 16941443
-
Boland, T., Xu, T., Damon, B., & Cui, X. (2006). Application of inkjet printing to tissue engineering. Biotechnology Journal,1, 910–917.
-
(2006)
Biotechnology Journal
, vol.1
, pp. 910-917
-
-
Boland, T.1
Xu, T.2
Damon, B.3
Cui, X.4
-
16
-
-
58249093214
-
Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
-
COI: 1:CAS:528:DC%2BD1MXpsFyjtw%3D%3D, PID: 19108884
-
Lee, W., Debasitis, J. C., Lee, V. K., Lee, J. H., Fischer, K., Edminster, K., et al. (2009). Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials,30, 1587–1595.
-
(2009)
Biomaterials
, vol.30
, pp. 1587-1595
-
-
Lee, W.1
Debasitis, J.C.2
Lee, V.K.3
Lee, J.H.4
Fischer, K.5
Edminster, K.6
Park, J.K.7
Yoo, S.S.8
-
17
-
-
77955689253
-
Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells
-
COI: 1:CAS:528:DC%2BC3cXosVWhs7c%3D, PID: 20589673
-
Cui, X., Dean, D., Ruggeri, Z. M., & Boland, T. (2010). Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells. Biotechnology and Bioengineering,106, 963–969.
-
(2010)
Biotechnology and Bioengineering
, vol.106
, pp. 963-969
-
-
Cui, X.1
Dean, D.2
Ruggeri, Z.M.3
Boland, T.4
-
18
-
-
0034056315
-
Microarray fabrication with covalent attachment of DNA using bubble jet technology
-
COI: 1:CAS:528:DC%2BD3cXis1GmtLg%3D, PID: 10748527
-
Okamoto, T., Suzuki, T., & Yamamoto, N. (2000). Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature Biotechnology,18, 438–441.
-
(2000)
Nature Biotechnology
, vol.18
, pp. 438-441
-
-
Okamoto, T.1
Suzuki, T.2
Yamamoto, N.3
-
19
-
-
33645883539
-
Viability and electrophysiology of neural cell structures generated by the inkjet printing method
-
COI: 1:CAS:528:DC%2BD28XjtVKjtb4%3D, PID: 16516288
-
Xu, T., Gregory, C. A., Molnar, P., Cui, X., Jalota, S., Bhaduri, S. B., & Boland, T. (2006). Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials,27, 3580–3588.
-
(2006)
Biomaterials
, vol.27
, pp. 3580-3588
-
-
Xu, T.1
Gregory, C.A.2
Molnar, P.3
Cui, X.4
Jalota, S.5
Bhaduri, S.B.6
Boland, T.7
-
20
-
-
41149105022
-
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles
-
COI: 1:CAS:528:DC%2BD1cXjs12nsLo%3D
-
Tekin, E., Smith, P. J., & Schubert, U. S. (2008). Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter,4, 703–713.
-
(2008)
Soft Matter
, vol.4
, pp. 703-713
-
-
Tekin, E.1
Smith, P.J.2
Schubert, U.S.3
-
21
-
-
84871703021
-
Bioprinting for stem cell research
-
COI: 1:CAS:528:DC%2BC38XhvVKqurbJ, PID: 23260439
-
Tasoglu, S., & Demirci, U. (2013). Bioprinting for stem cell research. Trends in Biotechnology,31, 10–19.
-
(2013)
Trends in Biotechnology
, vol.31
, pp. 10-19
-
-
Tasoglu, S.1
Demirci, U.2
-
22
-
-
84861698425
-
Thermal inkjet printing in tissue engineering and regenerative medicine
-
COI: 1:CAS:528:DC%2BC38XhtFSgtbrL, PID: 22436025
-
Cui, X., Boland, T., D’Lima, D. D., & Lotz, M. K. (2012). Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Patents on Drug Delivery and Formulation,6, 149–155.
-
(2012)
Recent Patents on Drug Delivery and Formulation
, vol.6
, pp. 149-155
-
-
Cui, X.1
Boland, T.2
D’Lima, D.D.3
Lotz, M.K.4
-
23
-
-
38349076688
-
Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
-
COI: 1:CAS:528:DC%2BD1cXhvVCktLo%3D, PID: 17901398
-
Phillippi, J. A., Miller, E., Weiss, L., Huard, J., Waggoner, A., & Campbell, P. (2008). Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells,26, 127–134.
-
(2008)
Stem Cells
, vol.26
, pp. 127-134
-
-
Phillippi, J.A.1
Miller, E.2
Weiss, L.3
Huard, J.4
Waggoner, A.5
Campbell, P.6
-
24
-
-
44349143228
-
Organic transistors manufactured using inkjet technology with subfemtoliter accuracy
-
COI: 1:CAS:528:DC%2BD1cXksVeqsrw%3D
-
Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., & Someya, T. (2008). Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proceedings of the National Academy of Science USA,105, 4976–4980.
-
(2008)
Proceedings of the National Academy of Science USA
, vol.105
, pp. 4976-4980
-
-
Sekitani, T.1
Noguchi, Y.2
Zschieschang, U.3
Klauk, H.4
Someya, T.5
-
25
-
-
77049107803
-
Inkjet printing-process and its applications
-
COI: 1:CAS:528:DC%2BC3cXitVShurs%3D, PID: 20217769
-
Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing-process and its applications. Advanced Materials,22, 673–685.
-
(2010)
Advanced Materials
, vol.22
, pp. 673-685
-
-
Singh, M.1
Haverinen, H.M.2
Dhagat, P.3
Jabbour, G.E.4
-
26
-
-
69649100202
-
Human microvasculature fabrication using thermal inkjet printing technology
-
COI: 1:CAS:528:DC%2BD1MXhtFWltbzL, PID: 19695697
-
Cui, X., & Boland, T. (2009). Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials,30, 6221–6227.
-
(2009)
Biomaterials
, vol.30
, pp. 6221-6227
-
-
Cui, X.1
Boland, T.2
-
27
-
-
77951139891
-
Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates
-
COI: 1:CAS:528:DC%2BC3cXltFyrsrY%3D
-
Kim, J. D., Choi, J. S., Kim, B. S., Chan Choi, Y., & Cho, Y. W. (2010). Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer,51, 2147–2154.
-
(2010)
Polymer
, vol.51
, pp. 2147-2154
-
-
Kim, J.D.1
Choi, J.S.2
Kim, B.S.3
Chan Choi, Y.4
Cho, Y.W.5
-
28
-
-
84873046124
-
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
-
COI: 1:CAS:528:DC%2BC3sXntleh, PID: 23197691
-
Skardal, A., Mack, D., Kapetanovic, E., Atala, A., Jackson, J. D., Yoo, J., & Soker, S. (2012). Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Translational Medicine,1, 792–802.
-
(2012)
Stem Cells Translational Medicine
, vol.1
, pp. 792-802
-
-
Skardal, A.1
Mack, D.2
Kapetanovic, E.3
Atala, A.4
Jackson, J.D.5
Yoo, J.6
Soker, S.7
-
29
-
-
84861826955
-
Direct human cartilage repair using three-dimensional bioprinting technology
-
COI: 1:CAS:528:DC%2BC38XotVOis7Y%3D, PID: 22394017
-
Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M., & D’Lima, D. D. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A,18, 1304–1312.
-
(2012)
Tissue Engineering Part A
, vol.18
, pp. 1304-1312
-
-
Cui, X.1
Breitenkamp, K.2
Finn, M.G.3
Lotz, M.4
D’Lima, D.D.5
-
30
-
-
77954494231
-
Bioprinting endothelial cells with alginate for 3d tissue constructs
-
PID: 20353253
-
Khalil, S., & Sun, W. (2009). Bioprinting endothelial cells with alginate for 3d tissue constructs. Journal of Biomechanical Engineering,131, 111002.
-
(2009)
Journal of Biomechanical Engineering
, vol.131
, pp. 111002
-
-
Khalil, S.1
Sun, W.2
-
31
-
-
38349195609
-
Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
-
COI: 1:CAS:528:DC%2BD1cXovFKgtQ%3D%3D, PID: 18333811
-
Fedorovich, N. E., de Wijn, J. R., Verbout, A. J., Alblas, J., & Dhert, W. J. (2008). Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A,14, 127–133.
-
(2008)
Tissue Engineering Part A
, vol.14
, pp. 127-133
-
-
Fedorovich, N.E.1
de Wijn, J.R.2
Verbout, A.J.3
Alblas, J.4
Dhert, W.J.5
-
32
-
-
33745786636
-
Direct freeform fabrication of seeded hydrogels in arbitrary geometries
-
COI: 1:CAS:528:DC%2BD28XlsFeqtrY%3D, PID: 16771645
-
Cohen, D. L., Malone, E., Lipson, H., & Bonassar, L. J. (2006). Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Engineering,12, 1325–1335.
-
(2006)
Tissue Engineering
, vol.12
, pp. 1325-1335
-
-
Cohen, D.L.1
Malone, E.2
Lipson, H.3
Bonassar, L.J.4
-
33
-
-
38349103640
-
Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing
-
COI: 1:CAS:528:DC%2BD1cXovFKgug%3D%3D, PID: 18333803
-
Chang, R., Nam, J., & Sun, W. (2008). Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Engineering Part A,14, 41–48.
-
(2008)
Tissue Engineering Part A
, vol.14
, pp. 41-48
-
-
Chang, R.1
Nam, J.2
Sun, W.3
-
34
-
-
84858779329
-
Toward engineering functional organ modules by additive manufacturing
-
PID: 22406433
-
Marga, F., Jakab, K., Khatiwala, C., Shepherd, B., Dorfman, S., Hubbard, B., et al. (2012). Toward engineering functional organ modules by additive manufacturing. Biofabrication,4, 022001.
-
(2012)
Biofabrication
, vol.4
, pp. 022001
-
-
Marga, F.1
Jakab, K.2
Khatiwala, C.3
Shepherd, B.4
Dorfman, S.5
Hubbard, B.6
Colbert, S.7
Gabor, F.8
-
35
-
-
84884211629
-
3d bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
PID: 23015540
-
Duan, B., Hockaday, L. A., Kang, K. H., & Butcher, J. T. (2013). 3d bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A,101, 1255–1264.
-
(2013)
Journal of Biomedical Materials Research Part A
, vol.101
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
Butcher, J.T.4
-
36
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
COI: 1:CAS:528:DC%2BD1MXhtVGqtLvI, PID: 19664819
-
Norotte, C., Marga, F. S., Niklason, L. E., & Forgacs, G. (2009). Scaffold-free vascular tissue engineering using bioprinting. Biomaterials,30, 5910–5917.
-
(2009)
Biomaterials
, vol.30
, pp. 5910-5917
-
-
Norotte, C.1
Marga, F.S.2
Niklason, L.E.3
Forgacs, G.4
-
37
-
-
84922697514
-
Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system
-
COI: 1:CAS:528:DC%2BC3sXhvFCjtbbM, PID: 24380055
-
Williams, S. K., Touroo, J. S., Church, K. H., & Hoying, J. B. (2013). Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Bioresearch Open Access,2, 448–454.
-
(2013)
Bioresearch Open Access
, vol.2
, pp. 448-454
-
-
Williams, S.K.1
Touroo, J.S.2
Church, K.H.3
Hoying, J.B.4
-
38
-
-
84899520611
-
Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
-
PID: 24695367
-
Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., et al. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication,6, 024105.
-
(2014)
Biofabrication
, vol.6
, pp. 024105
-
-
Bertassoni, L.E.1
Cardoso, J.C.2
Manoharan, V.3
Cristino, A.L.4
Bhise, N.S.5
Araujo, W.A.6
Zorlutuna, P.7
Vrana, N.E.8
Ghaemmaghami, A.M.9
Dokmeci, M.R.10
Khademhosseini, A.11
-
39
-
-
1542741004
-
Application of laser printing to mammalian cells
-
Barron, J. A., Ringeisen, B. R., Kim, H., Spargo, B. J., & Chrisey, D. B. (2004). Application of laser printing to mammalian cells. Thin Solid Films,453, 383–387.
-
(2004)
Thin Solid Films
, vol.453
, pp. 383-387
-
-
Barron, J.A.1
Ringeisen, B.R.2
Kim, H.3
Spargo, B.J.4
Chrisey, D.B.5
-
40
-
-
77955275038
-
Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
-
COI: 1:CAS:528:DC%2BC3cXpsFSjsLw%3D, PID: 20580082
-
Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., et al. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials,31, 7250–7256.
-
(2010)
Biomaterials
, vol.31
, pp. 7250-7256
-
-
Guillotin, B.1
Souquet, A.2
Catros, S.3
Duocastella, M.4
Pippenger, B.5
Bellance, S.6
Bareille, R.7
Remy, M.8
Bordenave, L.9
Amedee, J.10
Guillemot, F.11
-
41
-
-
80053297640
-
Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions
-
Gruene, M., Pflaum, M., Hess, C., Diamantouros, S., Schlie, S., Deiwick, A., et al. (2011). Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Engineering Part C: Methods,17, 973–982.
-
(2011)
Tissue Engineering Part C: Methods
, vol.17
, pp. 973-982
-
-
Gruene, M.1
Pflaum, M.2
Hess, C.3
Diamantouros, S.4
Schlie, S.5
Deiwick, A.6
Koch, L.7
Wilhelmi, M.8
Jockenhoevel, S.9
Haverich, A.10
Chichkov, B.11
-
42
-
-
84874591959
-
Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
-
COI: 1:CAS:528:DC%2BC3sXktFClsr4%3D, PID: 23469227
-
Michael, S., Sorg, H., Peck, C. T., Koch, L., Deiwick, A., Chichkov, B., et al. (2013). Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One,8, e57741.
-
(2013)
PLoS One
, vol.8
, pp. 57741
-
-
Michael, S.1
Sorg, H.2
Peck, C.T.3
Koch, L.4
Deiwick, A.5
Chichkov, B.6
Vogt, P.M.7
Reimers, K.8
-
43
-
-
77951245659
-
In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice
-
PID: 20811116
-
Keriquel, V., Guillemot, F., Arnault, I., Guillotin, B., Miraux, S., Amedee, J., et al. (2010). In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication,2, 014101.
-
(2010)
Biofabrication
, vol.2
, pp. 014101
-
-
Keriquel, V.1
Guillemot, F.2
Arnault, I.3
Guillotin, B.4
Miraux, S.5
Amedee, J.6
Fricain, J.C.7
Catros, S.8
-
44
-
-
77957562650
-
Biofabrication: A 21st century manufacturing paradigm
-
COI: 1:STN:280:DC%2BC3cjovVSrtA%3D%3D, PID: 20811099
-
Mironov, V., Trusk, T., Kasyanov, V., Little, S., Swaja, R., & Markwald, R. (2009). Biofabrication: A 21st century manufacturing paradigm. Biofabrication,1, 022001.
-
(2009)
Biofabrication
, vol.1
, pp. 022001
-
-
Mironov, V.1
Trusk, T.2
Kasyanov, V.3
Little, S.4
Swaja, R.5
Markwald, R.6
|