-
6
-
-
70349530653
-
State of the art on high temperature thermal energy storage for power generation. Part 1–concepts, materials and modellization
-
Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1–concepts, materials and modellization. Renew Sustain Energy Rev. 2010;14(1):31–55.
-
(2010)
Renew Sustain Energy Rev
, vol.14
, Issue.1
, pp. 31-55
-
-
Gil, A.1
Medrano, M.2
Martorell, I.3
Lazaro, A.4
Dolado, P.5
Zalba, B.6
-
7
-
-
78149411414
-
A review on phase change materials integrated in building walls
-
Kuznik F, David D, Johannes K, Roux J-J. A review on phase change materials integrated in building walls. Renew Sustain Energy Rev. 2011;15(1):379–91.
-
(2011)
Renew Sustain Energy Rev
, vol.15
, Issue.1
, pp. 379-391
-
-
Kuznik, F.1
David, D.2
Johannes, K.3
Roux, J.-J.4
-
8
-
-
78651106473
-
Materials used as PCM in thermal energy storage in buildings: a review
-
Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernandez AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.
-
(2011)
Renew Sustain Energy Rev
, vol.15
, Issue.3
, pp. 1675-1695
-
-
Cabeza, L.F.1
Castell, A.2
Barreneche, C.3
de Gracia, A.4
Fernandez, A.I.5
-
9
-
-
57649200354
-
Review on thermal energy storage with phase change materials and applications
-
Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.
-
(2009)
Renew Sustain Energy Rev
, vol.13
, Issue.2
, pp. 318-345
-
-
Sharma, A.1
Tyagi, V.V.2
Chen, C.R.3
Buddhi, D.4
-
10
-
-
33746043926
-
Latent heat storage materials and systems: a review
-
Sharma SD, Sagara K. Latent heat storage materials and systems: a review. Int J Green Energy. 2005;2(1):1–56.
-
(2005)
Int J Green Energy
, vol.2
, Issue.1
-
-
Sharma, S.D.1
Sagara, K.2
-
11
-
-
84903542783
-
Thermophysical properties of some organic phase change materials for latent heat storage
-
Kenisarin MM. Thermophysical properties of some organic phase change materials for latent heat storage. A review Solar Energy. 2014;107:553–75.
-
(2014)
A review Solar Energy
, vol.107
, pp. 553-575
-
-
Kenisarin, M.M.1
-
12
-
-
84899444262
-
Phase change materials for thermal energy storage
-
Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.
-
(2014)
Prog Mater Sci
, vol.65
, pp. 67-123
-
-
Pielichowska, K.1
Pielichowski, K.2
-
13
-
-
83955165238
-
Preparation and thermal energy storage properties of poly(n-butyl methacrylate)/fatty acids composites as form-stable phase change materials
-
Sari A, Alkan C. Preparation and thermal energy storage properties of poly(n-butyl methacrylate)/fatty acids composites as form-stable phase change materials. Polym Compos. 2012;33(1):92–8.
-
(2012)
Polym Compos
, vol.33
, Issue.1
, pp. 92-98
-
-
Sari, A.1
Alkan, C.2
-
14
-
-
40949115606
-
Latent heat storage above 120 degrees C for applications in the industrial process heat sector and solar power generation
-
Tamme R, Bauer T, Buschle J, Laing D, Mueller-Steinhagen H, Steinmann W-D. Latent heat storage above 120 degrees C for applications in the industrial process heat sector and solar power generation. Int J Energy Res. 2008;32(3):264–71.
-
(2008)
Int J Energy Res
, vol.32
, Issue.3
, pp. 264-271
-
-
Tamme, R.1
Bauer, T.2
Buschle, J.3
Laing, D.4
Mueller-Steinhagen, H.5
Steinmann, W.-D.6
-
15
-
-
0000143232
-
Measurement of thermo-physical properties of molten-salts-mixture of alkaline carbonate salts
-
Araki N, Matsuura M, Makino A, Hirata T, Kato Y. Measurement of thermo-physical properties of molten-salts-mixture of alkaline carbonate salts. Int J Thermophys. 1988;9(6):1071–80.
-
(1988)
Int J Thermophys
, vol.9
, Issue.6
, pp. 1071-1080
-
-
Araki, N.1
Matsuura, M.2
Makino, A.3
Hirata, T.4
Kato, Y.5
-
16
-
-
84884660989
-
Fatty acids as phase change materials: a review
-
Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.
-
(2014)
Renew Sustain Energy Rev
, vol.29
, pp. 482-498
-
-
Yuan, Y.1
Zhang, N.2
Tao, W.3
Cao, X.4
He, Y.5
-
17
-
-
3442899690
-
Phase transition temperature ranges and storage density of paraffin wax phase change materials
-
He B, Martin V, Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy. 2004;29(11):1785–804.
-
(2004)
Energy
, vol.29
, Issue.11
, pp. 1785-1804
-
-
He, B.1
Martin, V.2
Setterwall, F.3
-
18
-
-
84904189069
-
Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications
-
Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications. Energy. 2014;72:414–20.
-
(2014)
Energy
, vol.72
, pp. 414-420
-
-
Blanco-Rodriguez, P.1
Rodriguez-Aseguinolaza, J.2
Risueno, E.3
Tello, M.4
-
20
-
-
78650617245
-
Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
-
Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf. 2011;54(5–6):1064–70.
-
(2011)
Int J Heat Mass Transf
, vol.54
, Issue.5-6
, pp. 1064-1070
-
-
Shin, D.1
Banerjee, D.2
-
21
-
-
40549118893
-
Measurement of the specific heat capacity of water-based Al2O3 nanofluid
-
Zhou S, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:9.
-
(2008)
Appl Phys Lett
, vol.92
, pp. 9
-
-
Zhou, S.1
Ni, R.2
-
23
-
-
84887275972
-
Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage
-
Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.
-
(2013)
Nanoscale Res Lett
, vol.8
, Issue.1
, pp. 448
-
-
Chieruzzi, M.1
Cerritelli, G.F.2
Miliozzi, A.3
Kenny, J.M.4
-
26
-
-
84919940869
-
Increment of specific heat capacity of solar salt with SiO2 nanoparticles
-
Andreu-Cabedo P, Mondragon R, Hernandez L, Martinez-Cuenca R, Cabedo L, Enrique Julia J. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Research Letters 2014;9:582–92.
-
(2014)
Nanoscale Research Letters
, vol.9
, pp. 582-592
-
-
Andreu-Cabedo, P.1
Mondragon, R.2
Hernandez, L.3
Martinez-Cuenca, R.4
Cabedo, L.5
Enrique Julia, J.6
-
27
-
-
84881229370
-
Specific heat capacity of molten salt-based alumina nanofluid
-
Lu M, Huang C. Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale Research Letters 2013;8:292–8.
-
(2013)
Nanoscale Research Letters
, vol.8
, pp. 292-298
-
-
Lu, M.1
Huang, C.2
-
28
-
-
77958194559
-
The preparation and properties of multi-component molten salts
-
Peng Q, Ding J, Wei X, Yang J, Yang X. The preparation and properties of multi-component molten salts. Appl Energy. 2010;87(9):2812–7.
-
(2010)
Appl Energy
, vol.87
, Issue.9
, pp. 2812-2817
-
-
Peng, Q.1
Ding, J.2
Wei, X.3
Yang, J.4
Yang, X.5
-
29
-
-
84862778667
-
Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO3-Mg(NO3)(2)]
-
Reddy RG, Wang T, Mantha D. Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO3-Mg(NO3)(2)]. Thermochim Acta. 2012;531:6–11.
-
(2012)
Thermochim Acta
, vol.531
, pp. 6-11
-
-
Reddy, R.G.1
Wang, T.2
Mantha, D.3
-
30
-
-
0041723242
-
Heat-accumulation properties of melts
-
Gasanaliev AM, Gamataeva BY. Heat-accumulation properties of melts. Uspekhi Khimii. 2000;69(2):192–200.
-
(2000)
Uspekhi Khimii
, vol.69
, Issue.2
, pp. 192-200
-
-
Gasanaliev, A.M.1
Gamataeva, B.Y.2
-
31
-
-
40749145375
-
Highly conductive composites made of phase change materials and graphite for thermal storage
-
Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells. 2008;92(6):603–13.
-
(2008)
Sol Energy Mater Sol Cells
, vol.92
, Issue.6
, pp. 603-613
-
-
Pincemin, S.1
Olives, R.2
Py, X.3
Christ, M.4
-
32
-
-
84903193036
-
A comparative review on the specific heat of nanofluids for energy perspective
-
Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev. 2014;38:88–98.
-
(2014)
Renew Sustain Energy Rev
, vol.38
, pp. 88-98
-
-
Shahrul, I.M.1
Mahbubul, I.M.2
Khaleduzzaman, S.S.3
Saidur, R.4
Sabri, M.F.M.5
-
33
-
-
84877748100
-
Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage
-
Xiao X, Zhang P, Li M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage. Energy Convers Manag. 2013;73:86–94.
-
(2013)
Energy Convers Manag
, vol.73
, pp. 86-94
-
-
Xiao, X.1
Zhang, P.2
Li, M.3
-
34
-
-
84901247427
-
Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material
-
Xiao J, Huang J, Zhu P, Wang C, Li X. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta. 2014;587:52–8.
-
(2014)
Thermochim Acta
, vol.587
, pp. 52-58
-
-
Xiao, J.1
Huang, J.2
Zhu, P.3
Wang, C.4
Li, X.5
-
35
-
-
84888618948
-
Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity
-
Ho MX, Pan C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int J Heat Mass Transf. 2014;70:174–84.
-
(2014)
Int J Heat Mass Transf
, vol.70
, pp. 174-184
-
-
Ho, M.X.1
Pan, C.2
-
36
-
-
77955274187
-
KNO3/NaNO3—graphite materials for thermal energy storage at high temperature: Part I.—elaboration methods and thermal properties
-
Acem Z, Lopez J, Del Barrio EP. KNO3/NaNO3—graphite materials for thermal energy storage at high temperature: Part I.—elaboration methods and thermal properties. Appl Therm Eng. 2010;30(13):1580–5.
-
(2010)
Appl Therm Eng
, vol.30
, Issue.13
, pp. 1580-1585
-
-
Acem, Z.1
Lopez, J.2
Del Barrio, E.P.3
-
37
-
-
33645634748
-
Convective transport in nanofluids
-
Buongiorno J. Convective transport in nanofluids. J Heat Transfer-Transactions Asme. 2006;128(3):240–50.
-
(2006)
J Heat Transfer-Transactions Asme
, vol.128
, Issue.3
, pp. 240-250
-
-
Buongiorno, J.1
-
38
-
-
84865738896
-
-
SolarPACES, Granada (Spain)
-
Cordaro J, Kruizenga A, Altmaier R, Sampson M, Nissen A. Thermodynamic properties of molten nitrate salts. Granada (Spain): SolarPACES; 2011.
-
(2011)
Thermodynamic properties of molten nitrate salts
-
-
Cordaro, J.1
Kruizenga, A.2
Altmaier, R.3
Sampson, M.4
Nissen, A.5
-
39
-
-
0040349570
-
Heat-capacities and latent heats of LiNO3, NaNO3, and KNO3
-
Takahashi Y, Sakamoto R, Kamimoto M. Heat-capacities and latent heats of LiNO3, NaNO3, and KNO3. Int J Thermophys. 1988;9(6):1081–90.
-
(1988)
Int J Thermophys
, vol.9
, Issue.6
, pp. 1081-1090
-
-
Takahashi, Y.1
Sakamoto, R.2
Kamimoto, M.3
-
40
-
-
0020190653
-
Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities
-
Rogers DJ, Janz GJ. Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities. J Chemical Engineering Data. 1982;27(4):424–8.
-
(1982)
J Chemical Engineering Data
, vol.27
, Issue.4
, pp. 424-428
-
-
Rogers, D.J.1
Janz, G.J.2
-
41
-
-
49149144127
-
Calorimetric determination of the thermodynamic properties of the binary eutectics in the NaNO3 Ca(NO3)2 and KNO3 Ca(NO3)2 systems
-
Dancy EA, Nguyen-Duy P. Calorimetric determination of the thermodynamic properties of the binary eutectics in the NaNO3 Ca(NO3)2 and KNO3 Ca(NO3)2 systems. Thermochim Acta. 1980;42(1):59–63.
-
(1980)
Thermochim Acta
, vol.42
, Issue.1
, pp. 59-63
-
-
Dancy, E.A.1
Nguyen-Duy, P.2
-
42
-
-
0020547857
-
The heat capacities of lithium, sodium, potassium, rubidium, and caesium nitrates in the solid and liquid states
-
Ichikawa K, Matsumoto T. The heat capacities of lithium, sodium, potassium, rubidium, and caesium nitrates in the solid and liquid states. Bull Chem Soc Jpn. 1953;56:2093–100.
-
(1953)
Bull Chem Soc Jpn
, vol.56
, pp. 2093-2100
-
-
Ichikawa, K.1
Matsumoto, T.2
-
43
-
-
0038596879
-
-
NSRDS-NBS 61 Part II (National Standard Reference Data Series), New York
-
Janz G, Allen C, Bansal N, Murphy R, Tomkins R. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component systems. New York: NSRDS-NBS 61 Part II (National Standard Reference Data Series); 1979.
-
(1979)
Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component systems
-
-
Janz, G.1
Allen, C.2
Bansal, N.3
Murphy, R.4
Tomkins, R.5
-
44
-
-
0038596879
-
-
NSRDS-NBS 61 Part IV (National Standard Reference Data Series), New York
-
Janz G, Allen C, Bansal N, Murphy R, Tomkins R. Physical properties data compilations relevant to energy storage. IV. Molten salts: data on additional single and multi-component salt systems. New York: NSRDS-NBS 61 Part IV (National Standard Reference Data Series); 1981.
-
(1981)
Physical properties data compilations relevant to energy storage. IV. Molten salts: data on additional single and multi-component salt systems
-
-
Janz, G.1
Allen, C.2
Bansal, N.3
Murphy, R.4
Tomkins, R.5
-
45
-
-
0035623411
-
Enhancement of molar heat capacity of nanostructured Al2O3
-
Wang L, Tan ZC, Meng SG, Liang DB, Li GG. Enhancement of molar heat capacity of nanostructured Al2O3. J Nanoparticle Res. 2001;3(5–6):483–7.
-
(2001)
J Nanoparticle Res
, vol.3
, Issue.5-6
, pp. 483-487
-
-
Wang, L.1
Tan, Z.C.2
Meng, S.G.3
Liang, D.B.4
Li, G.G.5
-
46
-
-
33745315249
-
Surface and size effects on the specific heat capacity of nanoparticles
-
Wang BX, Zhou LP, Peng XF. Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys. 2006;27(1):139–51.
-
(2006)
Int J Thermophys
, vol.27
, Issue.1
, pp. 139-151
-
-
Wang, B.X.1
Zhou, L.P.2
Peng, X.F.3
-
47
-
-
67650723427
-
Particle shape effects on thermophysical properties of alumina nanofluids
-
Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:1.
-
(2009)
J Appl Phys
, vol.106
, pp. 1
-
-
Timofeeva, E.V.1
Routbort, J.L.2
Singh, D.3
-
48
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91(7):4568–72.
-
(2002)
J Appl Phys
, vol.91
, Issue.7
, pp. 4568-4572
-
-
Xie, H.Q.1
Wang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
Wu, Q.R.6
-
49
-
-
84869870986
-
Enhanced specific heat capacity of high-temperature molten salt-based nanofluids
-
Tiznobaik H, Shin D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int J Heat Mass Transf. 2013;57(2):542–8.
-
(2013)
Int J Heat Mass Transf
, vol.57
, Issue.2
, pp. 542-548
-
-
Tiznobaik, H.1
Shin, D.2
-
50
-
-
84874036259
-
Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures
-
Shin D, Banerjee D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Transfer-Transactions Asme. 2013;135:3.
-
(2013)
J Heat Transfer-Transactions Asme
, vol.135
, pp. 3
-
-
Shin, D.1
Banerjee, D.2
-
51
-
-
84255171267
-
Particle size effects in the thermal conductivity enhancement of copper-based nanofluids
-
Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Research Letters 2011;6:217–23.
-
(2011)
Nanoscale Research Letters
, vol.6
, pp. 217-223
-
-
Saterlie, M.1
Sahin, H.2
Kavlicoglu, B.3
Liu, Y.4
Graeve, O.5
-
52
-
-
65949083993
-
Critical issues in nanofluids preparation
-
Wu D, Zhu H, Wang L, Liu L. Critical issues in nanofluids preparation. Characterization Thermal Conductivity Current NanoSci. 2009;5(1):103–12.
-
(2009)
Characterization Thermal Conductivity Current NanoSci
, vol.5
, Issue.1
, pp. 103-112
-
-
Wu, D.1
Zhu, H.2
Wang, L.3
Liu, L.4
-
53
-
-
39149138986
-
Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
-
Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51(5–6):1431–8.
-
(2008)
Int J Heat Mass Transf
, vol.51
, Issue.5-6
, pp. 1431-1438
-
-
Evans, W.1
Prasher, R.2
Fish, J.3
Meakin, P.4
Phelan, P.5
Keblinski, P.6
-
54
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids
-
Xuan YM, Li Q, Hu WF. Aggregation structure and thermal conductivity of nanofluids. Aiche J. 2003;49(4):1038–43.
-
(2003)
Aiche J
, vol.49
, Issue.4
, pp. 1038-1043
-
-
Xuan, Y.M.1
Li, Q.2
Hu, W.F.3
-
55
-
-
33749589746
-
Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids
-
Zhu H, Zhang C, Liu S, Tang Y, Yin Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett. 2006;89:2.
-
(2006)
Appl Phys Lett
, vol.89
, pp. 2
-
-
Zhu, H.1
Zhang, C.2
Liu, S.3
Tang, Y.4
Yin, Y.5
-
56
-
-
33644690829
-
Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
-
Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:9.
-
(2006)
Appl Phys Lett
, vol.88
, pp. 9
-
-
Evans, W.1
Fish, J.2
Keblinski, P.3
-
57
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.
-
(2004)
Appl Phys Lett
, vol.84
, Issue.21
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.S.2
-
58
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:2.
-
(2005)
Phys Rev Lett
, vol.94
, pp. 2
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
59
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
-
Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5(1–2):167–71.
-
(2003)
J Nanoparticle Res
, vol.5
, Issue.1-2
, pp. 167-171
-
-
Yu, W.1
Choi, S.U.S.2
-
60
-
-
77955087171
-
Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids
-
Li L, Zhang Y, Ma H, Yang M. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanoparticle Res. 2010;12(3):811–21.
-
(2010)
J Nanoparticle Res
, vol.12
, Issue.3
, pp. 811-821
-
-
Li, L.1
Zhang, Y.2
Ma, H.3
Yang, M.4
-
61
-
-
84908518160
-
Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material
-
Luo Z, Zhang Q, Wu G. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material. Int J Heat Mass Transf. 2015;80:653–9.
-
(2015)
Int J Heat Mass Transf
, vol.80
, pp. 653-659
-
-
Luo, Z.1
Zhang, Q.2
Wu, G.3
|