메뉴 건너뛰기




Volumn 10, Issue 1, 2015, Pages

A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage

Author keywords

Heat capacity; Molten salt; Nanocomposite; Nanofluid; Nanoparticles; Phase change materials; Thermal energy storage

Indexed keywords

ALUMINA; ALUMINUM; DISPERSIONS; DYE-SENSITIZED SOLAR CELLS; ENERGY STORAGE; FUSED SALTS; HEAT STORAGE; MIXING; MOLTEN MATERIALS; NANOCOMPOSITES; NANOPARTICLES; NITRATES; PHASE CHANGE MATERIALS; SILICA; SPECIFIC HEAT; STORAGE (MATERIALS); SYNTHESIS (CHEMICAL); THERMAL ENERGY; THERMODYNAMIC PROPERTIES;

EID: 84933497424     PISSN: 19317573     EISSN: 1556276X     Source Type: Journal    
DOI: 10.1186/s11671-015-0984-2     Document Type: Article
Times cited : (131)

References (61)
  • 5
    • 13644262478 scopus 로고    scopus 로고
    • Survey of thermal energy storage for parabolic trough power plants
    • Herrmann U, Kearney DW. Survey of thermal energy storage for parabolic trough power plants. J Solar Energy Engineering-Transactions Asme. 2002;124(2):145–52.
    • (2002) J Solar Energy Engineering-Transactions Asme , vol.124 , Issue.2 , pp. 145-152
    • Herrmann, U.1    Kearney, D.W.2
  • 6
    • 70349530653 scopus 로고    scopus 로고
    • State of the art on high temperature thermal energy storage for power generation. Part 1–concepts, materials and modellization
    • Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1–concepts, materials and modellization. Renew Sustain Energy Rev. 2010;14(1):31–55.
    • (2010) Renew Sustain Energy Rev , vol.14 , Issue.1 , pp. 31-55
    • Gil, A.1    Medrano, M.2    Martorell, I.3    Lazaro, A.4    Dolado, P.5    Zalba, B.6
  • 7
    • 78149411414 scopus 로고    scopus 로고
    • A review on phase change materials integrated in building walls
    • Kuznik F, David D, Johannes K, Roux J-J. A review on phase change materials integrated in building walls. Renew Sustain Energy Rev. 2011;15(1):379–91.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.1 , pp. 379-391
    • Kuznik, F.1    David, D.2    Johannes, K.3    Roux, J.-J.4
  • 9
    • 57649200354 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change materials and applications
    • Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.2 , pp. 318-345
    • Sharma, A.1    Tyagi, V.V.2    Chen, C.R.3    Buddhi, D.4
  • 10
    • 33746043926 scopus 로고    scopus 로고
    • Latent heat storage materials and systems: a review
    • Sharma SD, Sagara K. Latent heat storage materials and systems: a review. Int J Green Energy. 2005;2(1):1–56.
    • (2005) Int J Green Energy , vol.2 , Issue.1
    • Sharma, S.D.1    Sagara, K.2
  • 11
    • 84903542783 scopus 로고    scopus 로고
    • Thermophysical properties of some organic phase change materials for latent heat storage
    • Kenisarin MM. Thermophysical properties of some organic phase change materials for latent heat storage. A review Solar Energy. 2014;107:553–75.
    • (2014) A review Solar Energy , vol.107 , pp. 553-575
    • Kenisarin, M.M.1
  • 12
    • 84899444262 scopus 로고    scopus 로고
    • Phase change materials for thermal energy storage
    • Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.
    • (2014) Prog Mater Sci , vol.65 , pp. 67-123
    • Pielichowska, K.1    Pielichowski, K.2
  • 13
    • 83955165238 scopus 로고    scopus 로고
    • Preparation and thermal energy storage properties of poly(n-butyl methacrylate)/fatty acids composites as form-stable phase change materials
    • Sari A, Alkan C. Preparation and thermal energy storage properties of poly(n-butyl methacrylate)/fatty acids composites as form-stable phase change materials. Polym Compos. 2012;33(1):92–8.
    • (2012) Polym Compos , vol.33 , Issue.1 , pp. 92-98
    • Sari, A.1    Alkan, C.2
  • 14
    • 40949115606 scopus 로고    scopus 로고
    • Latent heat storage above 120 degrees C for applications in the industrial process heat sector and solar power generation
    • Tamme R, Bauer T, Buschle J, Laing D, Mueller-Steinhagen H, Steinmann W-D. Latent heat storage above 120 degrees C for applications in the industrial process heat sector and solar power generation. Int J Energy Res. 2008;32(3):264–71.
    • (2008) Int J Energy Res , vol.32 , Issue.3 , pp. 264-271
    • Tamme, R.1    Bauer, T.2    Buschle, J.3    Laing, D.4    Mueller-Steinhagen, H.5    Steinmann, W.-D.6
  • 15
    • 0000143232 scopus 로고
    • Measurement of thermo-physical properties of molten-salts-mixture of alkaline carbonate salts
    • Araki N, Matsuura M, Makino A, Hirata T, Kato Y. Measurement of thermo-physical properties of molten-salts-mixture of alkaline carbonate salts. Int J Thermophys. 1988;9(6):1071–80.
    • (1988) Int J Thermophys , vol.9 , Issue.6 , pp. 1071-1080
    • Araki, N.1    Matsuura, M.2    Makino, A.3    Hirata, T.4    Kato, Y.5
  • 17
    • 3442899690 scopus 로고    scopus 로고
    • Phase transition temperature ranges and storage density of paraffin wax phase change materials
    • He B, Martin V, Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy. 2004;29(11):1785–804.
    • (2004) Energy , vol.29 , Issue.11 , pp. 1785-1804
    • He, B.1    Martin, V.2    Setterwall, F.3
  • 18
    • 84904189069 scopus 로고    scopus 로고
    • Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications
    • Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications. Energy. 2014;72:414–20.
    • (2014) Energy , vol.72 , pp. 414-420
    • Blanco-Rodriguez, P.1    Rodriguez-Aseguinolaza, J.2    Risueno, E.3    Tello, M.4
  • 20
    • 78650617245 scopus 로고    scopus 로고
    • Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
    • Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf. 2011;54(5–6):1064–70.
    • (2011) Int J Heat Mass Transf , vol.54 , Issue.5-6 , pp. 1064-1070
    • Shin, D.1    Banerjee, D.2
  • 21
    • 40549118893 scopus 로고    scopus 로고
    • Measurement of the specific heat capacity of water-based Al2O3 nanofluid
    • Zhou S, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:9.
    • (2008) Appl Phys Lett , vol.92 , pp. 9
    • Zhou, S.1    Ni, R.2
  • 23
    • 84887275972 scopus 로고    scopus 로고
    • Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage
    • Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.
    • (2013) Nanoscale Res Lett , vol.8 , Issue.1 , pp. 448
    • Chieruzzi, M.1    Cerritelli, G.F.2    Miliozzi, A.3    Kenny, J.M.4
  • 25
    • 73949132166 scopus 로고    scopus 로고
    • Flow loop experiments using polyalphaolefin nanofluids
    • Nelson IC, Banerjee D, Ponnappan R. Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf. 2009;23(4):752–61.
    • (2009) J Thermophys Heat Transf , vol.23 , Issue.4 , pp. 752-761
    • Nelson, I.C.1    Banerjee, D.2    Ponnappan, R.3
  • 27
    • 84881229370 scopus 로고    scopus 로고
    • Specific heat capacity of molten salt-based alumina nanofluid
    • Lu M, Huang C. Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale Research Letters 2013;8:292–8.
    • (2013) Nanoscale Research Letters , vol.8 , pp. 292-298
    • Lu, M.1    Huang, C.2
  • 28
    • 77958194559 scopus 로고    scopus 로고
    • The preparation and properties of multi-component molten salts
    • Peng Q, Ding J, Wei X, Yang J, Yang X. The preparation and properties of multi-component molten salts. Appl Energy. 2010;87(9):2812–7.
    • (2010) Appl Energy , vol.87 , Issue.9 , pp. 2812-2817
    • Peng, Q.1    Ding, J.2    Wei, X.3    Yang, J.4    Yang, X.5
  • 29
    • 84862778667 scopus 로고    scopus 로고
    • Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO3-Mg(NO3)(2)]
    • Reddy RG, Wang T, Mantha D. Thermodynamic properties of potassium nitrate-magnesium nitrate compound [2KNO3-Mg(NO3)(2)]. Thermochim Acta. 2012;531:6–11.
    • (2012) Thermochim Acta , vol.531 , pp. 6-11
    • Reddy, R.G.1    Wang, T.2    Mantha, D.3
  • 30
    • 0041723242 scopus 로고    scopus 로고
    • Heat-accumulation properties of melts
    • Gasanaliev AM, Gamataeva BY. Heat-accumulation properties of melts. Uspekhi Khimii. 2000;69(2):192–200.
    • (2000) Uspekhi Khimii , vol.69 , Issue.2 , pp. 192-200
    • Gasanaliev, A.M.1    Gamataeva, B.Y.2
  • 31
    • 40749145375 scopus 로고    scopus 로고
    • Highly conductive composites made of phase change materials and graphite for thermal storage
    • Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells. 2008;92(6):603–13.
    • (2008) Sol Energy Mater Sol Cells , vol.92 , Issue.6 , pp. 603-613
    • Pincemin, S.1    Olives, R.2    Py, X.3    Christ, M.4
  • 33
    • 84877748100 scopus 로고    scopus 로고
    • Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage
    • Xiao X, Zhang P, Li M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage. Energy Convers Manag. 2013;73:86–94.
    • (2013) Energy Convers Manag , vol.73 , pp. 86-94
    • Xiao, X.1    Zhang, P.2    Li, M.3
  • 34
    • 84901247427 scopus 로고    scopus 로고
    • Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material
    • Xiao J, Huang J, Zhu P, Wang C, Li X. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta. 2014;587:52–8.
    • (2014) Thermochim Acta , vol.587 , pp. 52-58
    • Xiao, J.1    Huang, J.2    Zhu, P.3    Wang, C.4    Li, X.5
  • 35
    • 84888618948 scopus 로고    scopus 로고
    • Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity
    • Ho MX, Pan C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int J Heat Mass Transf. 2014;70:174–84.
    • (2014) Int J Heat Mass Transf , vol.70 , pp. 174-184
    • Ho, M.X.1    Pan, C.2
  • 36
    • 77955274187 scopus 로고    scopus 로고
    • KNO3/NaNO3—graphite materials for thermal energy storage at high temperature: Part I.—elaboration methods and thermal properties
    • Acem Z, Lopez J, Del Barrio EP. KNO3/NaNO3—graphite materials for thermal energy storage at high temperature: Part I.—elaboration methods and thermal properties. Appl Therm Eng. 2010;30(13):1580–5.
    • (2010) Appl Therm Eng , vol.30 , Issue.13 , pp. 1580-1585
    • Acem, Z.1    Lopez, J.2    Del Barrio, E.P.3
  • 37
    • 33645634748 scopus 로고    scopus 로고
    • Convective transport in nanofluids
    • Buongiorno J. Convective transport in nanofluids. J Heat Transfer-Transactions Asme. 2006;128(3):240–50.
    • (2006) J Heat Transfer-Transactions Asme , vol.128 , Issue.3 , pp. 240-250
    • Buongiorno, J.1
  • 39
    • 0040349570 scopus 로고
    • Heat-capacities and latent heats of LiNO3, NaNO3, and KNO3
    • Takahashi Y, Sakamoto R, Kamimoto M. Heat-capacities and latent heats of LiNO3, NaNO3, and KNO3. Int J Thermophys. 1988;9(6):1081–90.
    • (1988) Int J Thermophys , vol.9 , Issue.6 , pp. 1081-1090
    • Takahashi, Y.1    Sakamoto, R.2    Kamimoto, M.3
  • 40
    • 0020190653 scopus 로고
    • Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities
    • Rogers DJ, Janz GJ. Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities. J Chemical Engineering Data. 1982;27(4):424–8.
    • (1982) J Chemical Engineering Data , vol.27 , Issue.4 , pp. 424-428
    • Rogers, D.J.1    Janz, G.J.2
  • 41
    • 49149144127 scopus 로고
    • Calorimetric determination of the thermodynamic properties of the binary eutectics in the NaNO3 Ca(NO3)2 and KNO3 Ca(NO3)2 systems
    • Dancy EA, Nguyen-Duy P. Calorimetric determination of the thermodynamic properties of the binary eutectics in the NaNO3 Ca(NO3)2 and KNO3 Ca(NO3)2 systems. Thermochim Acta. 1980;42(1):59–63.
    • (1980) Thermochim Acta , vol.42 , Issue.1 , pp. 59-63
    • Dancy, E.A.1    Nguyen-Duy, P.2
  • 42
    • 0020547857 scopus 로고
    • The heat capacities of lithium, sodium, potassium, rubidium, and caesium nitrates in the solid and liquid states
    • Ichikawa K, Matsumoto T. The heat capacities of lithium, sodium, potassium, rubidium, and caesium nitrates in the solid and liquid states. Bull Chem Soc Jpn. 1953;56:2093–100.
    • (1953) Bull Chem Soc Jpn , vol.56 , pp. 2093-2100
    • Ichikawa, K.1    Matsumoto, T.2
  • 45
    • 0035623411 scopus 로고    scopus 로고
    • Enhancement of molar heat capacity of nanostructured Al2O3
    • Wang L, Tan ZC, Meng SG, Liang DB, Li GG. Enhancement of molar heat capacity of nanostructured Al2O3. J Nanoparticle Res. 2001;3(5–6):483–7.
    • (2001) J Nanoparticle Res , vol.3 , Issue.5-6 , pp. 483-487
    • Wang, L.1    Tan, Z.C.2    Meng, S.G.3    Liang, D.B.4    Li, G.G.5
  • 46
    • 33745315249 scopus 로고    scopus 로고
    • Surface and size effects on the specific heat capacity of nanoparticles
    • Wang BX, Zhou LP, Peng XF. Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys. 2006;27(1):139–51.
    • (2006) Int J Thermophys , vol.27 , Issue.1 , pp. 139-151
    • Wang, B.X.1    Zhou, L.P.2    Peng, X.F.3
  • 47
    • 67650723427 scopus 로고    scopus 로고
    • Particle shape effects on thermophysical properties of alumina nanofluids
    • Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:1.
    • (2009) J Appl Phys , vol.106 , pp. 1
    • Timofeeva, E.V.1    Routbort, J.L.2    Singh, D.3
  • 48
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91(7):4568–72.
    • (2002) J Appl Phys , vol.91 , Issue.7 , pp. 4568-4572
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5    Wu, Q.R.6
  • 49
    • 84869870986 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of high-temperature molten salt-based nanofluids
    • Tiznobaik H, Shin D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int J Heat Mass Transf. 2013;57(2):542–8.
    • (2013) Int J Heat Mass Transf , vol.57 , Issue.2 , pp. 542-548
    • Tiznobaik, H.1    Shin, D.2
  • 50
    • 84874036259 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures
    • Shin D, Banerjee D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Transfer-Transactions Asme. 2013;135:3.
    • (2013) J Heat Transfer-Transactions Asme , vol.135 , pp. 3
    • Shin, D.1    Banerjee, D.2
  • 51
    • 84255171267 scopus 로고    scopus 로고
    • Particle size effects in the thermal conductivity enhancement of copper-based nanofluids
    • Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Research Letters 2011;6:217–23.
    • (2011) Nanoscale Research Letters , vol.6 , pp. 217-223
    • Saterlie, M.1    Sahin, H.2    Kavlicoglu, B.3    Liu, Y.4    Graeve, O.5
  • 53
    • 39149138986 scopus 로고    scopus 로고
    • Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
    • Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51(5–6):1431–8.
    • (2008) Int J Heat Mass Transf , vol.51 , Issue.5-6 , pp. 1431-1438
    • Evans, W.1    Prasher, R.2    Fish, J.3    Meakin, P.4    Phelan, P.5    Keblinski, P.6
  • 54
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • Xuan YM, Li Q, Hu WF. Aggregation structure and thermal conductivity of nanofluids. Aiche J. 2003;49(4):1038–43.
    • (2003) Aiche J , vol.49 , Issue.4 , pp. 1038-1043
    • Xuan, Y.M.1    Li, Q.2    Hu, W.F.3
  • 55
    • 33749589746 scopus 로고    scopus 로고
    • Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids
    • Zhu H, Zhang C, Liu S, Tang Y, Yin Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett. 2006;89:2.
    • (2006) Appl Phys Lett , vol.89 , pp. 2
    • Zhu, H.1    Zhang, C.2    Liu, S.3    Tang, Y.4    Yin, Y.5
  • 56
    • 33644690829 scopus 로고    scopus 로고
    • Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
    • Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:9.
    • (2006) Appl Phys Lett , vol.88 , pp. 9
    • Evans, W.1    Fish, J.2    Keblinski, P.3
  • 57
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.
    • (2004) Appl Phys Lett , vol.84 , Issue.21 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 58
    • 18144386609 scopus 로고    scopus 로고
    • Thermal conductivity of nanoscale colloidal solutions (nanofluids)
    • Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:2.
    • (2005) Phys Rev Lett , vol.94 , pp. 2
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 59
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
    • Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5(1–2):167–71.
    • (2003) J Nanoparticle Res , vol.5 , Issue.1-2 , pp. 167-171
    • Yu, W.1    Choi, S.U.S.2
  • 60
    • 77955087171 scopus 로고    scopus 로고
    • Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids
    • Li L, Zhang Y, Ma H, Yang M. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanoparticle Res. 2010;12(3):811–21.
    • (2010) J Nanoparticle Res , vol.12 , Issue.3 , pp. 811-821
    • Li, L.1    Zhang, Y.2    Ma, H.3    Yang, M.4
  • 61
    • 84908518160 scopus 로고    scopus 로고
    • Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material
    • Luo Z, Zhang Q, Wu G. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material. Int J Heat Mass Transf. 2015;80:653–9.
    • (2015) Int J Heat Mass Transf , vol.80 , pp. 653-659
    • Luo, Z.1    Zhang, Q.2    Wu, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.