메뉴 건너뛰기




Volumn 8, Issue 1, 2013, Pages

Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage

Author keywords

Heat capacity; Molten salt; Nanocomposite; Nanofluid; Nanoparticles; Phase change materials; Thermal energy storage

Indexed keywords

ALUMINA; ALUMINUM OXIDE; DIFFERENTIAL SCANNING CALORIMETRY; FUSED SALTS; HEAT STORAGE; MOLTEN MATERIALS; NANOCOMPOSITES; NANOPARTICLES; PHASE CHANGE MATERIALS; POTASH; POTASSIUM NITRATE; SCANNING ELECTRON MICROSCOPY; SILICA; SIO2 NANOPARTICLES; SODIUM NITRATE; SPECIFIC HEAT; STORAGE (MATERIALS); THERMAL ENERGY; TIO2 NANOPARTICLES; TITANIUM DIOXIDE;

EID: 84887275972     PISSN: 19317573     EISSN: 1556276X     Source Type: Journal    
DOI: 10.1186/1556-276X-8-448     Document Type: Article
Times cited : (328)

References (56)
  • 1
    • 83655170426 scopus 로고    scopus 로고
    • International Energy Agency IEA, Paris
    • International Energy Agency IEA: World Energy Outlook 2011. Paris; 2011.
    • (2011) World Energy Outlook 2011
  • 3
    • 0032136895 scopus 로고    scopus 로고
    • Review on sustainable thermal energy storage technologies, Part I: Heat Storage Materials and techniques
    • Hasnain SM: Review on sustainable thermal energy storage technologies, Part I: Heat Storage Materials and techniques. Energ Convers Manage 1998, 39(11):1127-1138.
    • (1998) Energ Convers Manage , vol.39 , Issue.11 , pp. 1127-1138
    • Hasnain, S.M.1
  • 4
    • 13644262478 scopus 로고    scopus 로고
    • Survey of thermal energy storage for parabolic trough power plants
    • Herrmann U, Kearney DW: Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 2002, 124(2):145-152.
    • (2002) J Sol Energy Eng , vol.124 , Issue.2 , pp. 145-152
    • Herrmann, U.1    Kearney, D.W.2
  • 5
    • 84951778747 scopus 로고    scopus 로고
    • Solar thermal energy storage technologies
    • In Energy Forum 10000 Solar Gigawatts, 23 April 2008
    • Laing D: Solar thermal energy storage technologies. In Energy Forum 10000 Solar Gigawatts, 23 April 2008. Hannover: Hannover Messe; 2008. http://www.dlr.de/Portaldata/41/Resources/dokumente/institut/thermischept/Solar_Thermal_ Energy_Storage_Technologies_Hannover2008.pdf.
    • (2008) Hannover: Hannover Messe
    • Laing, D.1
  • 6
    • 70349530653 scopus 로고    scopus 로고
    • State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization
    • Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF: State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew Sust Energ Rev 2010, 14:31-55.
    • (2010) Renew Sust Energ Rev , vol.14 , pp. 31-55
    • Gil, A.1    Medrano, M.2    Martorell, I.3    Lazaro, A.4    Dolado, P.5    Zalba, B.6    Cabeza, L.F.7
  • 8
    • 77956265643 scopus 로고    scopus 로고
    • Phase change materials for building applications: A state-of-the-art review
    • Baetens R, Jelle BP, Gustavsen A: Phase change materials for building applications: a state-of-the-art review. Energ Buildings 2010, 42:1361-1368.
    • (2010) Energ Buildings , vol.42 , pp. 1361-1368
    • Baetens, R.1    Jelle, B.P.2    Gustavsen, A.3
  • 9
    • 78149411414 scopus 로고    scopus 로고
    • A review on phase change materials integrated in building walls
    • Kuznik F, David D, Johannes K, Roux J: A review on phase change materials integrated in building walls. Renew Sust Energ Rev 2011, 15:379-391.
    • (2011) Renew Sust Energ Rev , vol.15 , pp. 379-391
    • Kuznik, F.1    David, D.2    Johannes, K.3    Roux, J.4
  • 10
    • 57649200354 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change materials and applications
    • Sharma A, Tyagi VV, Chen CR, Buddhi D: Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009, 13:318-345.
    • (2009) Renew Sust Energ Rev , vol.13 , pp. 318-345
    • Sharma, A.1    Tyagi, V.V.2    Chen, C.R.3    Buddhi, D.4
  • 11
    • 33746043926 scopus 로고    scopus 로고
    • Latent heat storage materials and systems: A review
    • Sharma SD, Sagara K: Latent heat storage materials and systems: a review. Int J Green Energy 2005, 2:1-56.
    • (2005) Int J Green Energy , vol.2 , pp. 1-56
    • Sharma, S.D.1    Sagara, K.2
  • 12
    • 40949115606 scopus 로고    scopus 로고
    • Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation
    • Tamme R, Bauer T, Buschle J, Laing D, Muller-Steinhagen H, Steinmann WD: Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation. Int J Energ Res 2008, 32:264-271.
    • (2008) Int J Energ Res , vol.32 , pp. 264-271
    • Tamme, R.1    Bauer, T.2    Buschle, J.3    Laing, D.4    Muller-Steinhagen, H.5    Steinmann, W.D.6
  • 13
    • 62549131588 scopus 로고    scopus 로고
    • Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage
    • Sari A, Karaipekli A: Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energ Mat Sol C 2009, 93:571-576.
    • (2009) Sol Energ Mat Sol C , vol.93 , pp. 571-576
    • Sari, A.1    Karaipekli, A.2
  • 15
    • 0037289573 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications
    • Zalba B, Marin JM, Cabeza LF, Mehling H: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003, 23:251-283.
    • (2003) Appl Therm Eng , vol.23 , pp. 251-283
    • Zalba, B.1    Marin, J.M.2    Cabeza, L.F.3    Mehling, H.4
  • 16
    • 74449092400 scopus 로고    scopus 로고
    • High-temperature phase change materials for thermal energy storage
    • Kenisarin MK: High-temperature phase change materials for thermal energy storage. Renew Sust Energ Rev 2010, 14:955-970.
    • (2010) Renew Sust Energ Rev , vol.14 , pp. 955-970
    • Kenisarin, M.K.1
  • 17
    • 0000143232 scopus 로고
    • Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts
    • Araki N, Matsuura M, Makino A, Hirata T, Kato Y: Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts. Int J Thermophys 1988, 9:1071-1080.
    • (1988) Int J Thermophys , vol.9 , pp. 1071-1080
    • Araki, N.1    Matsuura, M.2    Makino, A.3    Hirata, T.4    Kato, Y.5
  • 18
    • 33746072322 scopus 로고    scopus 로고
    • Fatty acids as phase change materials (PCMs) for thermal energy storage: A review
    • Rozanna D, Chuah TG, Salmiah A, Choong TSY, Sa'ari M: Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy 2004, 1(4):495-513.
    • (2004) Int J Green Energy , vol.1 , Issue.4 , pp. 495-513
    • Rozanna, D.1    Chuah, T.G.2    Salmiah, A.3    Choong, T.S.Y.4    Sa'ari, M.5
  • 19
    • 33845911471 scopus 로고    scopus 로고
    • Experimental study on melting/solidification characteristics of a paraffin as PCM
    • Akgün M, Aydin O, Kaygusuz K: Experimental study on melting/solidification characteristics of a paraffin as PCM. -. Energ Convers Manage 2007, 48:669-678.
    • (2007) Energ Convers Manage , vol.48 , pp. 669-678
    • Akgün, M.1    Aydin, O.2    Kaygusuz, K.3
  • 20
    • 0022031224 scopus 로고
    • New eutectic alloys and their heats of transformation
    • Farkas D, Birchenall CE: New eutectic alloys and their heats of transformation. Metall Trans A 1985, 16A:324-328.
    • (1985) Metall Trans A , vol.16 A , pp. 324-328
    • Farkas, D.1    Birchenall, C.E.2
  • 21
    • 78650617245 scopus 로고    scopus 로고
    • Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
    • Shin D, Banerjee D: Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Tran 2011, 54:1064-1070.
    • (2011) Int J Heat Mass Tran , vol.54 , pp. 1064-1070
    • Shin, D.1    Banerjee, D.2
  • 22
    • 84869870986 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of high-temperature molten salt-based nanofluids
    • Tiznobaik H, Shin D: Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int J Heat Mass Tran 2013, 57:542-548.
    • (2013) Int J Heat Mass Tran , vol.57 , pp. 542-548
    • Tiznobaik, H.1    Shin, D.2
  • 23
    • 79951508243 scopus 로고    scopus 로고
    • 2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials
    • 2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl Energ 2011, 88:2106-2112.
    • (2011) Appl Energ , vol.88 , pp. 2106-2112
    • Cai, Y.1    Ke, H.2    Dong, J.3    Wei, Q.4    Lin, J.5    Zhao, Y.6    Song, L.7    Hub, Y.8    Huang, F.9    Gao, W.10    Fong, H.11
  • 25
    • 73949132166 scopus 로고    scopus 로고
    • Flow loop experiments using polyalphaolefin nanofluids
    • Nelson IC, Banerjee D: Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Tran 2009, 23:752-761.
    • (2009) J Thermophys Heat Tran , vol.23 , pp. 752-761
    • Nelson, I.C.1    Banerjee, D.2
  • 27
    • 70649097599 scopus 로고    scopus 로고
    • Specific heat measurement of three nanofluids and development of new correlations
    • Vajjha RS, Das DK: Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 2009, 131:1-7.
    • (2009) J Heat Transf , vol.131 , pp. 1-7
    • Vajjha, R.S.1    Das, D.K.2
  • 28
    • 80155153818 scopus 로고    scopus 로고
    • Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress)
    • Shin D, Banerjee D: Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress). Int J Struct Changes Sol 2010, 2:25-31.
    • (2010) Int J Struct Changes Sol , vol.2 , pp. 25-31
    • Shin, D.1    Banerjee, D.2
  • 29
    • 78650042829 scopus 로고    scopus 로고
    • Enhanced specific heat of silica nanofluid
    • Shin D, Banerjee D: Enhanced specific heat of silica nanofluid. J Heat Transfer 2011, 133(2):024501-024504.
    • (2011) J Heat Transfer , vol.133 , Issue.2 , pp. 024501-024504
    • Shin, D.1    Banerjee, D.2
  • 30
    • 84858195895 scopus 로고    scopus 로고
    • Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry
    • O'Hanley H, Buongiorno J, McKrell T, Hu L: Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mec Eng 2012, 2012:181079.
    • (2012) Adv Mec Eng 2012 , pp. 181079
    • O'Hanley, H.1    Buongiorno, J.2    McKrell, T.3    Hu, L.4
  • 31
    • 33645634748 scopus 로고    scopus 로고
    • Convective transport in nanofluids
    • Buongiorno J: Convective transport in nanofluids. J Heat Transf 2006, 128:240-250.
    • (2006) J Heat Transf , vol.128 , pp. 240-250
    • Buongiorno, J.1
  • 32
    • 84874036259 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures
    • Banerjee SD: Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Transfer 2013, 135(3):032801-032808.
    • (2013) J Heat Transfer , vol.135 , Issue.3 , pp. 032801-032808
    • Banerjee, S.D.1
  • 33
    • 84881229370 scopus 로고    scopus 로고
    • Specific heat capacity of molten salt-based alumina nanofluids
    • Lu MC, Huang CH: Specific heat capacity of molten salt-based alumina nanofluids. Nanoscale Res Lett 2013, 8:292-299.
    • (2013) Nanoscale Res Lett , vol.8 , pp. 292-299
    • Lu, M.C.1    Huang, C.H.2
  • 35
    • 34848822926 scopus 로고    scopus 로고
    • Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids
    • Namburu PK, Kulkarni DP, Dandekar A, Das DK: Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett 2007, 2:67-71.
    • (2007) Micro Nano Lett , vol.2 , pp. 67-71
    • Namburu, P.K.1    Kulkarni, D.P.2    Dandekar, A.3    Das, D.K.4
  • 37
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • Jang SP, Choi SUS: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 2004, 84:4316-4318.
    • (2004) Appl Phys Lett , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 38
    • 18144386609 scopus 로고    scopus 로고
    • Thermal conductivity of nanoscale colloidal solutions (nanofluids)
    • Prasher R, Bhattacharya P, Phelan P: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 2005, 94:025901.
    • (2005) Phys Rev Lett , vol.94 , pp. 025901
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.3
  • 39
    • 33644690829 scopus 로고    scopus 로고
    • Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
    • Evans W, Fish J, Keblinski P: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 2006, 88(9):093116.
    • (2006) Appl Phys Lett , vol.88 , Issue.9 , pp. 093116
    • Evans, W.1    Fish, J.2    Keblinski, P.3
  • 40
    • 39149138986 scopus 로고    scopus 로고
    • Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
    • Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Tran 2008, 51(5):1431-1438.
    • (2008) Int J Heat Mass Tran , vol.51 , Issue.5 , pp. 1431-1438
    • Evans, W.1    Prasher, R.2    Fish, J.3    Meakin, P.4    Phelan, P.5    Keblinski, P.6
  • 41
    • 33749589746 scopus 로고    scopus 로고
    • Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids
    • Zhu H, Zhang C, Liu S, Tang Y, Yin Y: Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 2006, 89:023123.
    • (2006) Appl Phys Lett , vol.89 , pp. 023123
    • Zhu, H.1    Zhang, C.2    Liu, S.3    Tang, Y.4    Yin, Y.5
  • 42
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • Xuan Y, Li Q, Hu W: Aggregation structure and thermal conductivity of nanofluids. AlChE Journal 2003, 49(4):1038-1043.
    • (2003) AlChE Journal , vol.49 , Issue.4 , pp. 1038-1043
    • Xuan, Y.1    Li, Q.2    Hu, W.3
  • 43
    • 77955087171 scopus 로고    scopus 로고
    • Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids
    • Li L, Zhang Y, Ma H, Yang M: Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanopart Res 2010, 12:811-821.
    • (2010) J Nanopart Res , vol.12 , pp. 811-821
    • Li, L.1    Zhang, Y.2    Ma, H.3    Yang, M.4
  • 44
  • 45
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model
    • Yu W, Choi SUS: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 2003, 5:167-171.
    • (2003) J Nanopart Res , vol.5 , pp. 167-171
    • Yu, W.1    Choi, S.U.S.2
  • 46
    • 0033335346 scopus 로고    scopus 로고
    • Heat capacity measurement of boron nitride-filled polybenzoxazine: The composite structure-insensitive property
    • Ishida H, Rimdusit S: Heat capacity measurement of boron nitride-filled polybenzoxazine: the composite structure-insensitive property. J Therm Anal Calorim 1999, 58:497-507.
    • (1999) J Therm Anal Calorim , vol.58 , pp. 497-507
    • Ishida, H.1    Rimdusit, S.2
  • 47
    • 33947332426 scopus 로고
    • Measurement of specific heat functions by Differential Scanning Calorimetry
    • O'Neill MJ: Measurement of specific heat functions by Differential Scanning Calorimetry. Anal Chem 1966, 36:1331-1336.
    • (1966) Anal Chem , vol.36 , pp. 1331-1336
    • O'Neill, M.J.1
  • 49
    • 84866913848 scopus 로고    scopus 로고
    • Experimental study of forced convective heat transfer of nanofluids in a microchannel
    • Anoop K, Sadr R, Yu J, Kang S, Jeon S, Banerjee D: Experimental study of forced convective heat transfer of nanofluids in a microchannel. Int Commun Heat Mass 2012, 39:1325-1330.
    • (2012) Int Commun Heat Mass , vol.39 , pp. 1325-1330
    • Anoop, K.1    Sadr, R.2    Yu, J.3    Kang, S.4    Jeon, S.5    Banerjee, D.6
  • 50
    • 14744281545 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of TiO2-water based nanofluids
    • Murshed SMS, Leong KC, Yang C: Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 2005, 44(4):367-370.
    • (2005) Int J Therm Sci , vol.44 , Issue.4 , pp. 367-370
    • Murshed, S.M.S.1    Leong, K.C.2    Yang, C.3
  • 52
    • 33745315249 scopus 로고    scopus 로고
    • Surface and size effects on the specific heat capacity of nanoparticles
    • Wang BX, Zhou LP, Peng XF: Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys 2006, 27:139-151.
    • (2006) Int J Thermophys , vol.27 , pp. 139-151
    • Wang, B.X.1    Zhou, L.P.2    Peng, X.F.3
  • 53
    • 84255171267 scopus 로고    scopus 로고
    • Particle size effects in the thermal conductivity enhancement of copper-based nanofluids
    • Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O: Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett 2011, 6(1):217-224.
    • (2011) Nanoscale Res Lett , vol.6 , Issue.1 , pp. 217-224
    • Saterlie, M.1    Sahin, H.2    Kavlicoglu, B.3    Liu, Y.4    Graeve, O.5
  • 54
    • 65949083993 scopus 로고    scopus 로고
    • Critical issues in nanofluids preparation, characterization and thermal conductivity
    • Wu D, Zhu H, Wang L, Liu L: Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci 2009, 5:103-112.
    • (2009) Curr Nanosci , vol.5 , pp. 103-112
    • Wu, D.1    Zhu, H.2    Wang, L.3    Liu, L.4
  • 55
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 2002, 91(7):4568-4572.
    • (2002) J Appl Phys , vol.91 , Issue.7 , pp. 4568-4572
    • Xie, H.1    Wang, J.2    Xi, T.3    Liu, Y.4    Ai, F.5    Wu, Q.6
  • 56
    • 67650723427 scopus 로고    scopus 로고
    • Particle shape effects on thermophysical properties of alumina nanofluids
    • Timofeeva EV, Routbort JL, Singh D: Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 2009, 106:014304.
    • (2009) J Appl Phys , vol.106 , pp. 014304
    • Timofeeva, E.V.1    Routbort, J.L.2    Singh, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.