-
1
-
-
84860530564
-
From megawatt to gigawatt new developments in concentrating solar thermal power
-
Washington, DC, USA
-
H.M. Steinhagen, From megawatt to gigawatt new developments in concentrating solar thermal power, in: Proceedings of the 14th Internal Heat Transfer Conference, Washington, DC, USA, 2010, p. 23411.
-
(2010)
Proceedings of the 14th Internal Heat Transfer Conference
, pp. 23411
-
-
Steinhagen, H.M.1
-
2
-
-
0347541237
-
Advances in solar thermal electricity technology
-
D. Miller Advances in solar thermal electricity technology Sol. Energy 76 2004 19 31
-
(2004)
Sol. Energy
, vol.76
, pp. 19-31
-
-
Miller, D.1
-
3
-
-
84875525506
-
A review of studies on central receiver solar thermal power plants
-
O. Behar, A. Khellaf, and K. Mohammedi A review of studies on central receiver solar thermal power plants Renew. Sustain. Energy Rev. 23 2013 12 39
-
(2013)
Renew. Sustain. Energy Rev.
, vol.23
, pp. 12-39
-
-
Behar, O.1
Khellaf, A.2
Mohammedi, K.3
-
4
-
-
0038813701
-
Assessment of a molten salt heat transfer fluid in a parabolic trough solar field
-
D. Keanry, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, and H. Price Assessment of a molten salt heat transfer fluid in a parabolic trough solar field J. Sol. Energy Eng. 125 2003 170 176
-
(2003)
J. Sol. Energy Eng.
, vol.125
, pp. 170-176
-
-
Keanry, D.1
Herrmann, U.2
Nava, P.3
Kelly, B.4
Mahoney, R.5
Pacheco, J.6
Cable, R.7
Potrovitza, N.8
Blake, D.9
Price, H.10
-
5
-
-
0035926469
-
Direct numerical simulation of turbulent free-surface high Prandtl number fluid flows in fusion reactors
-
DOI 10.1016/S0168-9002(01)00028-6, PII S0168900201000286
-
T. Kunugi, S. Satake, and A. Sagara Direct numerical simulation of turbulent free-surface high Prandtl number fluid flows in fusion reactors Nucl. Instrum. Methods Phys. Res. - Sec. A 464 2001 165 171 (Pubitemid 32534809)
-
(2001)
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
, vol.464
, Issue.1-3
, pp. 165-171
-
-
Kunugi, T.1
Satake, S.2
Sagara, A.3
-
6
-
-
68549128483
-
Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube
-
Y.T. Wu, B. Liu, C.F. Ma, and G. Hang Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube Exp. Therm. Fluid Sci. 33 2009 1128 1132
-
(2009)
Exp. Therm. Fluid Sci.
, vol.33
, pp. 1128-1132
-
-
Wu, Y.T.1
Liu, B.2
Ma, C.F.3
Hang, G.4
-
7
-
-
84869177257
-
Investigation on forced convection heat transfer of molten salt in circular tubes
-
Y.T. Wu, C. Chen, B. Liu, and C.F. Ma Investigation on forced convection heat transfer of molten salt in circular tubes Int. Commun. Heat Mass Transfer 39 2012 1550 1555
-
(2012)
Int. Commun. Heat Mass Transfer
, vol.39
, pp. 1550-1555
-
-
Wu, Y.T.1
Chen, C.2
Liu, B.3
Ma, C.F.4
-
8
-
-
0034316667
-
Design and development of the Flibe blanket for helical-type fusion reactor FFHR
-
DOI 10.1016/S0920-3796(00)00360-4
-
A. Sagara, H. Yamanishi, S. Imagawa, T. Muroga, T. Uda, T. Noda, S. Takahashi, K. Fukumoto, T. Yamamoto, H. Matsui, A. Kohyama, H. Hasizume, S. Toda, A. Shimizu, A. Suzuki, Y. Hosoya, S. Tanaka, T. Terai, Dai-Kai Sze, and O. Motojima Design and development of the Flibe blanket for helical-type fusion reactor FFHR Fusion Eng. Des. 49-50 2000 661 666 (Pubitemid 32087178)
-
(2000)
Fusion Engineering and Design
, vol.49-50
, pp. 661-666
-
-
Sagara, A.1
Yamanishi, H.2
Imagawa, S.3
Muroga, T.4
Uda, T.5
Noda, T.6
Takahashi, S.7
Fukumoto, K.8
Yamamoto, T.9
Matsui, H.10
Kohyama, A.11
Hasizume, H.12
Toda, S.13
Shimizu, A.14
Suzuki, A.15
Hosoya, Y.16
Tanaka, S.17
Terai, T.18
Sze, D.-K.19
Motojima, O.20
more..
-
9
-
-
17444442715
-
Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop applied for a fusion reactor Flibe blanket
-
DOI 10.1016/S0920-3796(02)00195-3, PII S0920379602001953
-
S. Toda, S. Chiba, K. yuki, M. Omae, and A. Sagara Experiment research on molten salt thermofluid technology using high-temperature molten salt loop applied for a fusion reactor Flibe blanket Fusion Eng. Des. 63-64 2002 405 409 (Pubitemid 35459598)
-
(2002)
Fusion Engineering and Design
, vol.63-64
, pp. 405-409
-
-
Toda, S.1
Chiba, S.2
Yuki, K.3
Omae, M.4
Sagara, A.5
-
10
-
-
17444369806
-
Experimental research on heat transfer enhancement for high prandtl-number fluid
-
S.Y. Chiba, M. Omae, K. Yuki, H. Hashizume, S. Toda, and A. Sagara Experimental research on heat transfer enhancement for high Prandtl-number fluid Fusion Sci. Technol. 47 2005 569 573 (Pubitemid 40538634)
-
(2005)
Fusion Science and Technology
, vol.47
, Issue.3
, pp. 569-573
-
-
Chiba, S.-Y.1
Omae, M.2
Yuki, K.3
Hashizume, H.4
Toda, S.5
Sagara, A.6
-
11
-
-
77958193075
-
Heat transfer enhancement and performance of the molten salt receiver of a solar power tower
-
M.L. Yang, X.X. Yang, X.P. Yang, and J. Ding Heat transfer enhancement and performance of the molten salt receiver of a solar power tower Appl. Energy 87 2010 2808 2811
-
(2010)
Appl. Energy
, vol.87
, pp. 2808-2811
-
-
Yang, M.L.1
Yang, X.X.2
Yang, X.P.3
Ding, J.4
-
13
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
R.L. Hamilton, and O.K. Crosser Thermal conductivity of heterogeneous two-component systems Ind. Eng. Chem. Res. 1 1962 187 191
-
(1962)
Ind. Eng. Chem. Res.
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
14
-
-
34548579481
-
Enhancing thermal conductivity of fluids with nanoparticles
-
San Francisco, CA, CONF-951135-29
-
S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: International mechanical engineering congress and exhibition, San Francisco, CA, CONF-951135-29, 1995.
-
(1995)
International Mechanical Engineering Congress and Exhibition
-
-
Choi, S.U.S.1
Eastman, J.A.2
-
15
-
-
0033339009
-
Thermal conductivity of nanoparticles-fluid mixture
-
X. Wang, and X. Xu Thermal conductivity of nanoparticles-fluid mixture J. Thermophys. Heat Transfer 13 1999 474 480
-
(1999)
J. Thermophys. Heat Transfer
, vol.13
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
-
16
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
H.Q. Xie, J.C. Chang, T.G. Xi, Y. Liu, and F. Ai Thermal conductivity enhancement of suspensions containing nanosized alumina particles J. Appl. Phys. 91 2002 4568 4572
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 4568-4572
-
-
Xie, H.Q.1
Chang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
-
17
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
DOI 10.1115/1.1571080
-
S.K. Das, N. Putra, P. Thiesen, and W. Roetzel Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transfer 125 2003 567 574 (Pubitemid 37078524)
-
(2003)
Journal of Heat Transfer
, vol.125
, Issue.4
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
20
-
-
0035910140
-
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
-
DOI 10.1016/S0017-9310(01)00175-2, PII S0017931001001752
-
P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman Mechanisms of heat flow suspensions of nano-sized particles Int. J. Heat Mass Transfer 45 2002 855 863 (Pubitemid 34034421)
-
(2002)
International Journal of Heat and Mass Transfer
, vol.45
, Issue.4
, pp. 855-863
-
-
Keblinski, P.1
Phillpot, S.R.2
Choi, S.U.S.3
Eastman, J.A.4
-
21
-
-
16244411133
-
A new thermal conductivity model for nanofluids
-
DOI 10.1007/s11051-004-3170-5
-
J. Koo, and C. Kleinstreuer A new thermal conductivity model for nanofluids J. Nanoparticle Res. 6 2004 577 588 (Pubitemid 40454281)
-
(2004)
Journal of Nanoparticle Research
, vol.6
, Issue.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
22
-
-
39649109213
-
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
-
DOI 10.1080/01457630701850851, PII 790750483
-
W. Yu, D.M. France, and J.L. Routbort Review and comparison of nanofluid thermal conductivity and heat transfer enhancements Heat Transfer Eng. 29 2008 432 460 (Pubitemid 351287612)
-
(2008)
Heat Transfer Engineering
, vol.29
, Issue.5
, pp. 432-460
-
-
Yu, W.1
France, D.M.2
Routbort, J.L.3
Choi, S.U.S.4
-
23
-
-
33745815300
-
Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids
-
DOI 10.1115/1.2188509
-
R. Prasher, P. Bhattacharya, and P.E. Phelan Brownian motioin based convection conductive model for the effective thermal conductivity of nanofluids J. Heat Transfer 128 2006 588 595 (Pubitemid 44027928)
-
(2006)
Journal of Heat Transfer
, vol.128
, Issue.6
, pp. 588-595
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
24
-
-
42149109642
-
Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluild
-
J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, and G. Chen Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluild J. Appl. Phys. 103 074301 2008 1 6
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 1-6
-
-
Garg, J.1
Poudel, B.2
Chiesa, M.3
Gordon, J.B.4
Ma, J.J.5
Wang, J.B.6
Ren, Z.F.7
Kang, Y.T.8
Ohtani, H.9
Nanda, J.10
McKinley, G.H.11
Chen, G.12
-
25
-
-
39149138986
-
Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
-
W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinshki Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids Int. J. Heat Mass Transfer 51 2008 1431 1438
-
(2008)
Int. J. Heat Mass Transfer
, vol.51
, pp. 1431-1438
-
-
Evans, W.1
Prasher, R.2
Fish, J.3
Meakin, P.4
Phelan, P.5
Keblinshki, P.6
-
26
-
-
77955470128
-
The effect alumina-water nanofluid particle size on thermal conductivity
-
T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, and H.G. Hsu The effect alumina-water nanofluid particle size on thermal conductivity Appl. Therm. Eng. 30 2010 2213 2218
-
(2010)
Appl. Therm. Eng.
, vol.30
, pp. 2213-2218
-
-
Teng, T.P.1
Hung, Y.H.2
Teng, T.C.3
Mo, H.E.4
Hsu, H.G.5
-
27
-
-
84876087836
-
Model for predicting the critical size of aggregation in nanofluids
-
J.Y. Jung, J. Koo, and Y.T. Kang Model for predicting the critical size of aggregation in nanofluids J. Mech. Sci. Technol. 27 2013 1165 1169
-
(2013)
J. Mech. Sci. Technol.
, vol.27
, pp. 1165-1169
-
-
Jung, J.Y.1
Koo, J.2
Kang, Y.T.3
-
28
-
-
33745315249
-
Surface and size effects on the specific heat capacity of nanoparticles
-
B.X. Wang, L.P. Zhou, and X.F. Peng Surface and size effects on the specific heat capacity of nanoparticles Int. J. Thermophys. 27 2006 139 151
-
(2006)
Int. J. Thermophys.
, vol.27
, pp. 139-151
-
-
Wang, B.X.1
Zhou, L.P.2
Peng, X.F.3
-
31
-
-
84867729437
-
Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids
-
C.A. Nieto de Castro, S.M.S. Murshed, M.J.V. Lourenco, F.J.V. Santos, M.L.M. Lopes, and Franca Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids Int. J. Therm. Sci. 62 2012 34 39
-
(2012)
Int. J. Therm. Sci.
, vol.62
, pp. 34-39
-
-
Nieto De Castro, C.A.1
Murshed, S.M.S.2
Lourenco, M.J.V.3
Santos, F.J.V.4
Lopes, M.L.M.5
-
32
-
-
73949132166
-
Flow loop experiments using polyalphaolefin nanofluids
-
I.C. Nelson, and D. Banerjee Flow loop experiments using polyalphaolefin nanofluids J. Thermophys. Heat Transfer 23 2009 752 761
-
(2009)
J. Thermophys. Heat Transfer
, vol.23
, pp. 752-761
-
-
Nelson, I.C.1
Banerjee, D.2
-
34
-
-
84858195895
-
Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry
-
H. O'Hanley, J. Buongiorno, T. McKrell, and L.W. Hu Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry Adv. Mech. Eng. 181079 2012 1 6
-
(2012)
Adv. Mech. Eng.
, pp. 1-6
-
-
O'Hanley, H.1
Buongiorno, J.2
McKrell, T.3
Hu, L.W.4
-
35
-
-
33645634748
-
Convective transport in nanofluids
-
J. Buongiorno Convective transport in nanofluids J. Heat Transfer 128 2006 240 250
-
(2006)
J. Heat Transfer
, vol.128
, pp. 240-250
-
-
Buongiorno, J.1
-
36
-
-
80054878759
-
Potential of nanoparticle-enhanced ionic liquid (NEILs) as advanced heat transfer fluids
-
N.J. Bridges, A.E. Visser, and E.B. Fox Potential of nanoparticle- enhanced ionic liquid (NEILs) as advanced heat transfer fluids Energy Fuels 25 2011 4862 4864
-
(2011)
Energy Fuels
, vol.25
, pp. 4862-4864
-
-
Bridges, N.J.1
Visser, A.E.2
Fox, E.B.3
-
37
-
-
80155153818
-
Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic
-
D. Shin, and D. Banerjee Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic Int. J. Struct. Changes Solid - Mech. Appl. 2 2 2010 25 31
-
(2010)
Int. J. Struct. Changes Solid - Mech. Appl.
, vol.2
, Issue.2
, pp. 25-31
-
-
Shin, D.1
Banerjee, D.2
-
38
-
-
78650042829
-
Enhanced specific heat of silica nanofluid
-
D. Shin, and D. Banerjee Enhanced specific heat of silica nanofluid J. Heat Transfer 133 024501 2011 1 3
-
(2011)
J. Heat Transfer
, vol.133
, pp. 1-3
-
-
Shin, D.1
Banerjee, D.2
-
39
-
-
78650617245
-
Enhancement of specific heat capacity of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
-
D. Shin, and D. Banerjee Enhancement of specific heat capacity of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications Int. J. Heat Mass Transfer 54 2011 1064 1070
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 1064-1070
-
-
Shin, D.1
Banerjee, D.2
-
40
-
-
80155190290
-
Enhancement of heat capacity of molten salt eutectics using inorganic nanoparticles for solar thermal energy applications
-
D. Shin, and D. Banerjee Enhancement of heat capacity of molten salt eutectics using inorganic nanoparticles for solar thermal energy applications Develop. Strategic Mater. Comput. Des. II: Ceram. Eng. Sci. Proc. 32 2011 119 126
-
(2011)
Develop. Strategic Mater. Comput. Des. II: Ceram. Eng. Sci. Proc.
, vol.32
, pp. 119-126
-
-
Shin, D.1
Banerjee, D.2
-
41
-
-
84874036259
-
Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures
-
D. Shin, and D. Banerjee Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures J. Heat Transfer 135 032801 2013 1 8
-
(2013)
J. Heat Transfer
, vol.135
, pp. 1-8
-
-
Shin, D.1
Banerjee, D.2
-
42
-
-
84869870986
-
Enhanced specific heat capacity of high temperature molten salt-based nanofluids
-
H. Tiznobaik, and D. Shin Enhanced specific heat capacity of high temperature molten salt-based nanofluids Int. J. Heat Mass Transfer 57 2013 542 548
-
(2013)
Int. J. Heat Mass Transfer
, vol.57
, pp. 542-548
-
-
Tiznobaik, H.1
Shin, D.2
-
43
-
-
84888587147
-
-
SAE Technical Paper 1731
-
S. Jung, B. Jo, D. Shin, D. Banerjee, Experimental validation of simple analytical model for specific heat capacity of aqueous nanofluids, SAE Technical Paper 1731, 2010, pp. 1-7.
-
(2010)
Experimental Validation of Simple Analytical Model for Specific Heat Capacity of Aqueous Nanofluids
, pp. 1-7
-
-
Jung, S.1
Jo, B.2
Shin, D.3
Banerjee, D.4
-
45
-
-
84876672117
-
Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate eutectic for concentrated solar power applications
-
B. Dudda, and D. Shin Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate eutectic for concentrated solar power applications Int. J. Therm. Sci. 69 2013 37 42
-
(2013)
Int. J. Therm. Sci.
, vol.69
, pp. 37-42
-
-
Dudda, B.1
Shin, D.2
-
46
-
-
77958181536
-
-
Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-5682
-
M.D. Silverman, J.R. Engel, Survey of technology for storage of thermal energy in heat transfer salt, Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-5682, 1977, p. 6.
-
(1977)
Survey of Technology for Storage of Thermal Energy in Heat Transfer Salt
, pp. 6
-
-
Silverman, M.D.1
Engel, J.R.2
-
47
-
-
0022099761
-
Experimental determination of the thermal conductivity of molten pure salts and salt mixtures
-
R. Tufeu, J.P. Petitet, L. Denielou, and B. Le Neindre Experimental determination of the thermal conductivity of molten pure salts and salt mixtures Int. J. Thermophys. 4 1985 315 330 (Pubitemid 15582008)
-
(1985)
International Journal of Thermophysics
, vol.6
, Issue.4
, pp. 315-330
-
-
Tufeu, R.1
Petitet, J.P.2
Denielou, L.3
Le Neindre, B.4
-
49
-
-
84888591000
-
Pressure drop measurement of molten salt flow in a microchannel
-
Kaoshinung, Taiwan, NP0171
-
M.X. Ho, C. Pan, Pressure drop measurement of molten salt flow in a microchannel, in: Proceedings of the Ninth International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safty, Kaoshinung, Taiwan, NP0171, 2012.
-
(2012)
Proceedings of the Ninth International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safty
-
-
Ho, M.X.1
Pan, C.2
-
50
-
-
84865578113
-
-
Idaho National Laboratory, Idaho, INL/EXT-10-1897
-
M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties, Idaho National Laboratory, Idaho, INL/EXT-10-1897, 2010, p. 13.
-
(2010)
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
, pp. 13
-
-
Sohal, M.S.1
Ebner, M.A.2
Sabharwall, P.3
Sharpe, P.4
-
51
-
-
0003447943
-
-
second ed. Prentice Hall NJ, USA p. 977
-
A.F. Mills Heat Transfer second ed. 1999 Prentice Hall NJ, USA p. 977
-
(1999)
Heat Transfer
-
-
Mills, A.F.1
|