메뉴 건너뛰기




Volumn 70, Issue , 2014, Pages 174-184

Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity

Author keywords

Molten salt; Nanofluid; Specific heat capacity; Thermal storage

Indexed keywords

ALUMINA NANOPARTICLE; DIFFERENTIAL SCANNING CALORIMETERS; MOLTEN SALT; NANOFLUIDS; OPTIMAL CONCENTRATION; THERMAL EQUILIBRIUM MODELS; THERMAL STORAGE; UNIFORM DISPERSIONS;

EID: 84888618948     PISSN: 00179310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijheatmasstransfer.2013.10.078     Document Type: Article
Times cited : (208)

References (51)
  • 1
    • 84860530564 scopus 로고    scopus 로고
    • From megawatt to gigawatt new developments in concentrating solar thermal power
    • Washington, DC, USA
    • H.M. Steinhagen, From megawatt to gigawatt new developments in concentrating solar thermal power, in: Proceedings of the 14th Internal Heat Transfer Conference, Washington, DC, USA, 2010, p. 23411.
    • (2010) Proceedings of the 14th Internal Heat Transfer Conference , pp. 23411
    • Steinhagen, H.M.1
  • 2
    • 0347541237 scopus 로고    scopus 로고
    • Advances in solar thermal electricity technology
    • D. Miller Advances in solar thermal electricity technology Sol. Energy 76 2004 19 31
    • (2004) Sol. Energy , vol.76 , pp. 19-31
    • Miller, D.1
  • 3
    • 84875525506 scopus 로고    scopus 로고
    • A review of studies on central receiver solar thermal power plants
    • O. Behar, A. Khellaf, and K. Mohammedi A review of studies on central receiver solar thermal power plants Renew. Sustain. Energy Rev. 23 2013 12 39
    • (2013) Renew. Sustain. Energy Rev. , vol.23 , pp. 12-39
    • Behar, O.1    Khellaf, A.2    Mohammedi, K.3
  • 6
    • 68549128483 scopus 로고    scopus 로고
    • Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube
    • Y.T. Wu, B. Liu, C.F. Ma, and G. Hang Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube Exp. Therm. Fluid Sci. 33 2009 1128 1132
    • (2009) Exp. Therm. Fluid Sci. , vol.33 , pp. 1128-1132
    • Wu, Y.T.1    Liu, B.2    Ma, C.F.3    Hang, G.4
  • 7
    • 84869177257 scopus 로고    scopus 로고
    • Investigation on forced convection heat transfer of molten salt in circular tubes
    • Y.T. Wu, C. Chen, B. Liu, and C.F. Ma Investigation on forced convection heat transfer of molten salt in circular tubes Int. Commun. Heat Mass Transfer 39 2012 1550 1555
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 1550-1555
    • Wu, Y.T.1    Chen, C.2    Liu, B.3    Ma, C.F.4
  • 9
    • 17444442715 scopus 로고    scopus 로고
    • Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop applied for a fusion reactor Flibe blanket
    • DOI 10.1016/S0920-3796(02)00195-3, PII S0920379602001953
    • S. Toda, S. Chiba, K. yuki, M. Omae, and A. Sagara Experiment research on molten salt thermofluid technology using high-temperature molten salt loop applied for a fusion reactor Flibe blanket Fusion Eng. Des. 63-64 2002 405 409 (Pubitemid 35459598)
    • (2002) Fusion Engineering and Design , vol.63-64 , pp. 405-409
    • Toda, S.1    Chiba, S.2    Yuki, K.3    Omae, M.4    Sagara, A.5
  • 11
    • 77958193075 scopus 로고    scopus 로고
    • Heat transfer enhancement and performance of the molten salt receiver of a solar power tower
    • M.L. Yang, X.X. Yang, X.P. Yang, and J. Ding Heat transfer enhancement and performance of the molten salt receiver of a solar power tower Appl. Energy 87 2010 2808 2811
    • (2010) Appl. Energy , vol.87 , pp. 2808-2811
    • Yang, M.L.1    Yang, X.X.2    Yang, X.P.3    Ding, J.4
  • 13
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems
    • R.L. Hamilton, and O.K. Crosser Thermal conductivity of heterogeneous two-component systems Ind. Eng. Chem. Res. 1 1962 187 191
    • (1962) Ind. Eng. Chem. Res. , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 15
    • 0033339009 scopus 로고    scopus 로고
    • Thermal conductivity of nanoparticles-fluid mixture
    • X. Wang, and X. Xu Thermal conductivity of nanoparticles-fluid mixture J. Thermophys. Heat Transfer 13 1999 474 480
    • (1999) J. Thermophys. Heat Transfer , vol.13 , pp. 474-480
    • Wang, X.1    Xu, X.2
  • 16
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • H.Q. Xie, J.C. Chang, T.G. Xi, Y. Liu, and F. Ai Thermal conductivity enhancement of suspensions containing nanosized alumina particles J. Appl. Phys. 91 2002 4568 4572
    • (2002) J. Appl. Phys. , vol.91 , pp. 4568-4572
    • Xie, H.Q.1    Chang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5
  • 17
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • DOI 10.1115/1.1571080
    • S.K. Das, N. Putra, P. Thiesen, and W. Roetzel Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transfer 125 2003 567 574 (Pubitemid 37078524)
    • (2003) Journal of Heat Transfer , vol.125 , Issue.4 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 21
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • DOI 10.1007/s11051-004-3170-5
    • J. Koo, and C. Kleinstreuer A new thermal conductivity model for nanofluids J. Nanoparticle Res. 6 2004 577 588 (Pubitemid 40454281)
    • (2004) Journal of Nanoparticle Research , vol.6 , Issue.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 22
    • 39649109213 scopus 로고    scopus 로고
    • Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
    • DOI 10.1080/01457630701850851, PII 790750483
    • W. Yu, D.M. France, and J.L. Routbort Review and comparison of nanofluid thermal conductivity and heat transfer enhancements Heat Transfer Eng. 29 2008 432 460 (Pubitemid 351287612)
    • (2008) Heat Transfer Engineering , vol.29 , Issue.5 , pp. 432-460
    • Yu, W.1    France, D.M.2    Routbort, J.L.3    Choi, S.U.S.4
  • 23
    • 33745815300 scopus 로고    scopus 로고
    • Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids
    • DOI 10.1115/1.2188509
    • R. Prasher, P. Bhattacharya, and P.E. Phelan Brownian motioin based convection conductive model for the effective thermal conductivity of nanofluids J. Heat Transfer 128 2006 588 595 (Pubitemid 44027928)
    • (2006) Journal of Heat Transfer , vol.128 , Issue.6 , pp. 588-595
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 25
    • 39149138986 scopus 로고    scopus 로고
    • Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
    • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinshki Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids Int. J. Heat Mass Transfer 51 2008 1431 1438
    • (2008) Int. J. Heat Mass Transfer , vol.51 , pp. 1431-1438
    • Evans, W.1    Prasher, R.2    Fish, J.3    Meakin, P.4    Phelan, P.5    Keblinshki, P.6
  • 26
    • 77955470128 scopus 로고    scopus 로고
    • The effect alumina-water nanofluid particle size on thermal conductivity
    • T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, and H.G. Hsu The effect alumina-water nanofluid particle size on thermal conductivity Appl. Therm. Eng. 30 2010 2213 2218
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 2213-2218
    • Teng, T.P.1    Hung, Y.H.2    Teng, T.C.3    Mo, H.E.4    Hsu, H.G.5
  • 27
    • 84876087836 scopus 로고    scopus 로고
    • Model for predicting the critical size of aggregation in nanofluids
    • J.Y. Jung, J. Koo, and Y.T. Kang Model for predicting the critical size of aggregation in nanofluids J. Mech. Sci. Technol. 27 2013 1165 1169
    • (2013) J. Mech. Sci. Technol. , vol.27 , pp. 1165-1169
    • Jung, J.Y.1    Koo, J.2    Kang, Y.T.3
  • 28
    • 33745315249 scopus 로고    scopus 로고
    • Surface and size effects on the specific heat capacity of nanoparticles
    • B.X. Wang, L.P. Zhou, and X.F. Peng Surface and size effects on the specific heat capacity of nanoparticles Int. J. Thermophys. 27 2006 139 151
    • (2006) Int. J. Thermophys. , vol.27 , pp. 139-151
    • Wang, B.X.1    Zhou, L.P.2    Peng, X.F.3
  • 32
    • 73949132166 scopus 로고    scopus 로고
    • Flow loop experiments using polyalphaolefin nanofluids
    • I.C. Nelson, and D. Banerjee Flow loop experiments using polyalphaolefin nanofluids J. Thermophys. Heat Transfer 23 2009 752 761
    • (2009) J. Thermophys. Heat Transfer , vol.23 , pp. 752-761
    • Nelson, I.C.1    Banerjee, D.2
  • 34
    • 84858195895 scopus 로고    scopus 로고
    • Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry
    • H. O'Hanley, J. Buongiorno, T. McKrell, and L.W. Hu Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry Adv. Mech. Eng. 181079 2012 1 6
    • (2012) Adv. Mech. Eng. , pp. 1-6
    • O'Hanley, H.1    Buongiorno, J.2    McKrell, T.3    Hu, L.W.4
  • 35
    • 33645634748 scopus 로고    scopus 로고
    • Convective transport in nanofluids
    • J. Buongiorno Convective transport in nanofluids J. Heat Transfer 128 2006 240 250
    • (2006) J. Heat Transfer , vol.128 , pp. 240-250
    • Buongiorno, J.1
  • 36
    • 80054878759 scopus 로고    scopus 로고
    • Potential of nanoparticle-enhanced ionic liquid (NEILs) as advanced heat transfer fluids
    • N.J. Bridges, A.E. Visser, and E.B. Fox Potential of nanoparticle- enhanced ionic liquid (NEILs) as advanced heat transfer fluids Energy Fuels 25 2011 4862 4864
    • (2011) Energy Fuels , vol.25 , pp. 4862-4864
    • Bridges, N.J.1    Visser, A.E.2    Fox, E.B.3
  • 37
    • 80155153818 scopus 로고    scopus 로고
    • Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic
    • D. Shin, and D. Banerjee Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic Int. J. Struct. Changes Solid - Mech. Appl. 2 2 2010 25 31
    • (2010) Int. J. Struct. Changes Solid - Mech. Appl. , vol.2 , Issue.2 , pp. 25-31
    • Shin, D.1    Banerjee, D.2
  • 38
    • 78650042829 scopus 로고    scopus 로고
    • Enhanced specific heat of silica nanofluid
    • D. Shin, and D. Banerjee Enhanced specific heat of silica nanofluid J. Heat Transfer 133 024501 2011 1 3
    • (2011) J. Heat Transfer , vol.133 , pp. 1-3
    • Shin, D.1    Banerjee, D.2
  • 39
    • 78650617245 scopus 로고    scopus 로고
    • Enhancement of specific heat capacity of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
    • D. Shin, and D. Banerjee Enhancement of specific heat capacity of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications Int. J. Heat Mass Transfer 54 2011 1064 1070
    • (2011) Int. J. Heat Mass Transfer , vol.54 , pp. 1064-1070
    • Shin, D.1    Banerjee, D.2
  • 40
    • 80155190290 scopus 로고    scopus 로고
    • Enhancement of heat capacity of molten salt eutectics using inorganic nanoparticles for solar thermal energy applications
    • D. Shin, and D. Banerjee Enhancement of heat capacity of molten salt eutectics using inorganic nanoparticles for solar thermal energy applications Develop. Strategic Mater. Comput. Des. II: Ceram. Eng. Sci. Proc. 32 2011 119 126
    • (2011) Develop. Strategic Mater. Comput. Des. II: Ceram. Eng. Sci. Proc. , vol.32 , pp. 119-126
    • Shin, D.1    Banerjee, D.2
  • 41
    • 84874036259 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures
    • D. Shin, and D. Banerjee Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures J. Heat Transfer 135 032801 2013 1 8
    • (2013) J. Heat Transfer , vol.135 , pp. 1-8
    • Shin, D.1    Banerjee, D.2
  • 42
    • 84869870986 scopus 로고    scopus 로고
    • Enhanced specific heat capacity of high temperature molten salt-based nanofluids
    • H. Tiznobaik, and D. Shin Enhanced specific heat capacity of high temperature molten salt-based nanofluids Int. J. Heat Mass Transfer 57 2013 542 548
    • (2013) Int. J. Heat Mass Transfer , vol.57 , pp. 542-548
    • Tiznobaik, H.1    Shin, D.2
  • 45
    • 84876672117 scopus 로고    scopus 로고
    • Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate eutectic for concentrated solar power applications
    • B. Dudda, and D. Shin Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate eutectic for concentrated solar power applications Int. J. Therm. Sci. 69 2013 37 42
    • (2013) Int. J. Therm. Sci. , vol.69 , pp. 37-42
    • Dudda, B.1    Shin, D.2
  • 47
    • 0022099761 scopus 로고
    • Experimental determination of the thermal conductivity of molten pure salts and salt mixtures
    • R. Tufeu, J.P. Petitet, L. Denielou, and B. Le Neindre Experimental determination of the thermal conductivity of molten pure salts and salt mixtures Int. J. Thermophys. 4 1985 315 330 (Pubitemid 15582008)
    • (1985) International Journal of Thermophysics , vol.6 , Issue.4 , pp. 315-330
    • Tufeu, R.1    Petitet, J.P.2    Denielou, L.3    Le Neindre, B.4
  • 51
    • 0003447943 scopus 로고    scopus 로고
    • second ed. Prentice Hall NJ, USA p. 977
    • A.F. Mills Heat Transfer second ed. 1999 Prentice Hall NJ, USA p. 977
    • (1999) Heat Transfer
    • Mills, A.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.