-
1
-
-
84892795827
-
Breast cancer statistics
-
DeSantis C., Ma J.L., Bryan L., Jemal A. Breast cancer statistics. CA Cancer J Clin 2013, 2014(64):52-62.
-
(2013)
CA Cancer J Clin
, vol.2014
, Issue.64
, pp. 52-62
-
-
DeSantis, C.1
Ma, J.L.2
Bryan, L.3
Jemal, A.4
-
4
-
-
35748953759
-
Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients
-
Becker S., Solomayer E., Becker-Pergola G., Wallwiener D., Fehm T. Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients. Breast Cancer Res Treat 2007, 106:239-242.
-
(2007)
Breast Cancer Res Treat
, vol.106
, pp. 239-242
-
-
Becker, S.1
Solomayer, E.2
Becker-Pergola, G.3
Wallwiener, D.4
Fehm, T.5
-
5
-
-
33644775686
-
Targeting multidrug resistance in cancer
-
Szakacs G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006, 5:219-234.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 219-234
-
-
Szakacs, G.1
Paterson, J.K.2
Ludwig, J.A.3
Booth-Genthe, C.4
Gottesman, M.M.5
-
6
-
-
73249145012
-
Invivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
-
Moon H.K., Lee S.H., Choi H.C. Invivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3:3707-3713.
-
(2009)
ACS Nano
, vol.3
, pp. 3707-3713
-
-
Moon, H.K.1
Lee, S.H.2
Choi, H.C.3
-
7
-
-
79952906236
-
Tumor regression invivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers
-
Choi W., Kim J., Kang C., Byeon C.C., Kim Y.H., Gi Tae Tumor regression invivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5:1995-2003.
-
(2011)
ACS Nano
, vol.5
, pp. 1995-2003
-
-
Choi, W.1
Kim, J.2
Kang, C.3
Byeon, C.C.4
Kim, Y.H.5
Gi, T.6
-
8
-
-
34249731526
-
Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells
-
Chen J., Wang D., Xi J., Au L., Siekkinen A., Warsen A., et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007, 7:1318-1322.
-
(2007)
Nano Lett
, vol.7
, pp. 1318-1322
-
-
Chen, J.1
Wang, D.2
Xi, J.3
Au, L.4
Siekkinen, A.5
Warsen, A.6
-
9
-
-
33244457595
-
Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
-
Huang X.H., El-Sayed I.H., Qian W., El-Sayed M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. JAm Chem Soc 2006, 128:2115-2120.
-
(2006)
JAm Chem Soc
, vol.128
, pp. 2115-2120
-
-
Huang, X.H.1
El-Sayed, I.H.2
Qian, W.3
El-Sayed, M.A.4
-
10
-
-
58149091042
-
Nanoshell-enabled photothermal cancer therapy: impending clinical impact
-
Lal S., Clare S.E., Halas N.J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008, 41:1842-1851.
-
(2008)
Acc Chem Res
, vol.41
, pp. 1842-1851
-
-
Lal, S.1
Clare, S.E.2
Halas, N.J.3
-
11
-
-
78650696318
-
Development and applications of photo-triggered theranostic agents
-
Rai P., Mallidi S., Zheng X., Rahmanzadeh R., Mir Y., Elrington S., et al. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010, 62:1094-1124.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 1094-1124
-
-
Rai, P.1
Mallidi, S.2
Zheng, X.3
Rahmanzadeh, R.4
Mir, Y.5
Elrington, S.6
-
12
-
-
80053349963
-
Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma
-
Lu W., Melancon M.P., Xiong C.Y., Huang Q., Elliott A., Song S.L., et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 2011, 71:6116-6121.
-
(2011)
Cancer Res
, vol.71
, pp. 6116-6121
-
-
Lu, W.1
Melancon, M.P.2
Xiong, C.Y.3
Huang, Q.4
Elliott, A.5
Song, S.L.6
-
13
-
-
70349912553
-
Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures
-
Hu K.W., Liu T.M., Chung K.Y., Huang K.S., Hsieh C.T., Sun C.K., et al. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. JAm Chem Soc 2009, 131:14186-14187.
-
(2009)
JAm Chem Soc
, vol.131
, pp. 14186-14187
-
-
Hu, K.W.1
Liu, T.M.2
Chung, K.Y.3
Huang, K.S.4
Hsieh, C.T.5
Sun, C.K.6
-
14
-
-
79951879265
-
Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy invivo
-
Jang B., Park J.Y., Tung C.H., Kim I.H., Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy invivo. ACS Nano 2011, 5:1086-1094.
-
(2011)
ACS Nano
, vol.5
, pp. 1086-1094
-
-
Jang, B.1
Park, J.Y.2
Tung, C.H.3
Kim, I.H.4
Choi, Y.5
-
15
-
-
77952913464
-
Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods
-
Huang H.C., Rege K., Heys J.J. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 2010, 4:2892-2900.
-
(2010)
ACS Nano
, vol.4
, pp. 2892-2900
-
-
Huang, H.C.1
Rege, K.2
Heys, J.J.3
-
16
-
-
84863338085
-
Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment
-
Zhang Z.J., Wang L.M., Wang J., Jiang X.M., Li X.H., Hu Z.J., et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 2012, 24:1418-1423.
-
(2012)
Adv Mater
, vol.24
, pp. 1418-1423
-
-
Zhang, Z.J.1
Wang, L.M.2
Wang, J.3
Jiang, X.M.4
Li, X.H.5
Hu, Z.J.6
-
17
-
-
0345686712
-
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
-
Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003, 100:13549-13554.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 13549-13554
-
-
Hirsch, L.R.1
Stafford, R.J.2
Bankson, J.A.3
Sershen, S.R.4
Rivera, B.5
Price, R.E.6
-
18
-
-
55549144337
-
Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods
-
Huang Y., Sefah K., Bamrungsap S., Chang H., Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 2008, 24:11860-11865.
-
(2008)
Langmuir
, vol.24
, pp. 11860-11865
-
-
Huang, Y.1
Sefah, K.2
Bamrungsap, S.3
Chang, H.4
Tan, W.5
-
19
-
-
84874422553
-
Graphene-based photothermal agent for rapid and effective killing of bacteria
-
Wu M.C., Deokar A.R., Liao J.H., Shih P.Y., Ling Y.C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7:1281-1290.
-
(2013)
ACS Nano
, vol.7
, pp. 1281-1290
-
-
Wu, M.C.1
Deokar, A.R.2
Liao, J.H.3
Shih, P.Y.4
Ling, Y.C.5
-
20
-
-
78049361957
-
Achelator-free multifunctional [Cu-64]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy
-
Zhou M., Zhang R., Huang M.A., Lu W., Song S.L., Melancon M.P., et al. Achelator-free multifunctional [Cu-64]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. JAm Chem Soc 2010, 132:15351-15358.
-
(2010)
JAm Chem Soc
, vol.132
, pp. 15351-15358
-
-
Zhou, M.1
Zhang, R.2
Huang, M.A.3
Lu, W.4
Song, S.L.5
Melancon, M.P.6
-
21
-
-
84555163706
-
Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells invivo
-
Tian Q., Jiang F., Zou R., Liu Q., Chen Z., Zhu M., et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells invivo. ACS Nano 2011, 5:9761-9771.
-
(2011)
ACS Nano
, vol.5
, pp. 9761-9771
-
-
Tian, Q.1
Jiang, F.2
Zou, R.3
Liu, Q.4
Chen, Z.5
Zhu, M.6
-
22
-
-
78650905600
-
Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells
-
Yang J., Choi J., Bang D., Kim E., Lim E.K., Park H., et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed 2011, 50:441-444.
-
(2011)
Angew Chem Int Ed
, vol.50
, pp. 441-444
-
-
Yang, J.1
Choi, J.2
Bang, D.3
Kim, E.4
Lim, E.K.5
Park, H.6
-
23
-
-
79953033890
-
Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
-
Lovell J.F., Jin C.S., Huynh E., Jin H., Kim C., Rubinstein J.L., et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011, 10:324-332.
-
(2011)
Nat Mater
, vol.10
, pp. 324-332
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
Jin, H.4
Kim, C.5
Rubinstein, J.L.6
-
24
-
-
84862865646
-
Organic stealth nanoparticles for highly effective invivo near-infrared photothermal therapy of cancer
-
Cheng L., Yang K., Chen Q., Liu Z. Organic stealth nanoparticles for highly effective invivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6:5605-5613.
-
(2012)
ACS Nano
, vol.6
, pp. 5605-5613
-
-
Cheng, L.1
Yang, K.2
Chen, Q.3
Liu, Z.4
-
25
-
-
84868138281
-
Invitro and invivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles
-
Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z. Invitro and invivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 2012, 24:5586-5592.
-
(2012)
Adv Mater
, vol.24
, pp. 5586-5592
-
-
Yang, K.1
Xu, H.2
Cheng, L.3
Sun, C.4
Wang, J.5
Liu, Z.6
-
26
-
-
70449602127
-
Second window for invivo imaging
-
Smith A.M., Mancini M.C., Nie SBIOIMAGING. Second window for invivo imaging. Nat Nanotechnol 2009, 4:710-711.
-
(2009)
Nat Nanotechnol
, vol.4
, pp. 710-711
-
-
Smith, A.M.1
Mancini, M.C.2
-
27
-
-
84879628368
-
Au nanorod design as light-absorber in the first and second biological near-infrared windows for invivo photothermal therapy
-
Tsai M., Chang S.G., Cheng F., Shanmugam V., Cheng Y., Su C., et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for invivo photothermal therapy. ACS Nano 2013, 7:5330-5342.
-
(2013)
ACS Nano
, vol.7
, pp. 5330-5342
-
-
Tsai, M.1
Chang, S.G.2
Cheng, F.3
Shanmugam, V.4
Cheng, Y.5
Su, C.6
-
28
-
-
84876040774
-
Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells invivo
-
Chen Z., Wang Q., Wang H., Zhang L., Song G., Song L., et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells invivo. Adv Mater 2013, 25:2095-2100.
-
(2013)
Adv Mater
, vol.25
, pp. 2095-2100
-
-
Chen, Z.1
Wang, Q.2
Wang, H.3
Zhang, L.4
Song, G.5
Song, L.6
-
29
-
-
84887565928
-
Photosensitization of singlet oxygen and invivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires
-
Kalluru P., Vankayala R., Chiang C., Hwang K.C. Photosensitization of singlet oxygen and invivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew Chem Int Ed 2013, 52:12332-12336.
-
(2013)
Angew Chem Int Ed
, vol.52
, pp. 12332-12336
-
-
Kalluru, P.1
Vankayala, R.2
Chiang, C.3
Hwang, K.C.4
-
30
-
-
84879868657
-
Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption
-
Guo C.S., Yin S., Yu H., Liu S.Q., Dong Q., Goto T., et al. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption. Nanoscale 2013, 5:6469-6478.
-
(2013)
Nanoscale
, vol.5
, pp. 6469-6478
-
-
Guo, C.S.1
Yin, S.2
Yu, H.3
Liu, S.Q.4
Dong, Q.5
Goto, T.6
-
31
-
-
79952758210
-
Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process
-
Guo C.S., Yin S., Yan M., Sato T. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. JMater Chem 2011, 21:5099-5105.
-
(2011)
JMater Chem
, vol.21
, pp. 5099-5105
-
-
Guo, C.S.1
Yin, S.2
Yan, M.3
Sato, T.4
-
32
-
-
77957082261
-
Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process
-
Guo C.S., Yin S., Zhang P.L., Yan M., Adachi K., Chonan T., et al. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. JMater Chem 2010, 20:8227-8229.
-
(2010)
JMater Chem
, vol.20
, pp. 8227-8229
-
-
Guo, C.S.1
Yin, S.2
Zhang, P.L.3
Yan, M.4
Adachi, K.5
Chonan, T.6
-
33
-
-
84859805750
-
Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties
-
Guo C.S., Yin S., Yan M., Kobayashi M., Kakihana M., Sato T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem 2012, 51:4763-4771.
-
(2012)
Inorg Chem
, vol.51
, pp. 4763-4771
-
-
Guo, C.S.1
Yin, S.2
Yan, M.3
Kobayashi, M.4
Kakihana, M.5
Sato, T.6
-
34
-
-
79960946301
-
Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods
-
Guo C.S., Yin S., Huang L.J., Yang L., Sato T. Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods. Chem Commun 2011, 47:8853-8855.
-
(2011)
Chem Commun
, vol.47
, pp. 8853-8855
-
-
Guo, C.S.1
Yin, S.2
Huang, L.J.3
Yang, L.4
Sato, T.5
-
35
-
-
0017982843
-
The transformation between hexagonal potassium tungsten bronze and polytungstateOriginal
-
Hussain A., Kihlborg L., Klug A. The transformation between hexagonal potassium tungsten bronze and polytungstateOriginal. JSolid State Chem 1978, 25:189-195.
-
(1978)
JSolid State Chem
, vol.25
, pp. 189-195
-
-
Hussain, A.1
Kihlborg, L.2
Klug, A.3
-
36
-
-
0015679508
-
The optical properties of some alkali metal tungsten bronzes from 0.1 to 38eV
-
Lynch Y.D.W., Rosei R., Weaver J.H., Olson C.G. The optical properties of some alkali metal tungsten bronzes from 0.1 to 38eV. JSolid State Chem 1973, 8:242-252.
-
(1973)
JSolid State Chem
, vol.8
, pp. 242-252
-
-
Lynch, Y.D.W.1
Rosei, R.2
Weaver, J.H.3
Olson, C.G.4
-
37
-
-
84857822876
-
Tunable localized surface plasmon resonances in tungsten oxide nanocrystals
-
Manthiram K., Alivisatos A.P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. JAm Chem Soc 2012, 134:3995-3998.
-
(2012)
JAm Chem Soc
, vol.134
, pp. 3995-3998
-
-
Manthiram, K.1
Alivisatos, A.P.2
-
38
-
-
84904095271
-
Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy
-
Liu X.J., Li B., Fu F.F., Xu K.B., Zou R.J., Wang Q., et al. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Trans 2014, 43:11709-11715.
-
(2014)
Dalton Trans
, vol.43
, pp. 11709-11715
-
-
Liu, X.J.1
Li, B.2
Fu, F.F.3
Xu, K.B.4
Zou, R.J.5
Wang, Q.6
-
39
-
-
80051529630
-
Using 915nm laser excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion nanoparticles for invitro and deeper invivo bioimaging without overheating irradiation
-
Zhan Q.Q., Qian J., Liang H.J., Somesfalean G., Wang D., He S.L., et al. Using 915nm laser excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion nanoparticles for invitro and deeper invivo bioimaging without overheating irradiation. ACS Nano 2011, 5:3744-3757.
-
(2011)
ACS Nano
, vol.5
, pp. 3744-3757
-
-
Zhan, Q.Q.1
Qian, J.2
Liang, H.J.3
Somesfalean, G.4
Wang, D.5
He, S.L.6
-
40
-
-
33750011463
-
Concomitant real-time monitoring of intracellular reactive oxygen species and mitochondrial membrane potential in individual living promonocytic cells
-
Zurgil N., Shafran Y., Afrimzon E., Fixler D., Shainberg A., Deutsch M. Concomitant real-time monitoring of intracellular reactive oxygen species and mitochondrial membrane potential in individual living promonocytic cells. JImmunol Methods 2006, 316:27-41.
-
(2006)
JImmunol Methods
, vol.316
, pp. 27-41
-
-
Zurgil, N.1
Shafran, Y.2
Afrimzon, E.3
Fixler, D.4
Shainberg, A.5
Deutsch, M.6
|