메뉴 건너뛰기




Volumn 2004-January, Issue January, 2004, Pages

Efficient regularized least squares classification

Author keywords

[No Author keywords available]

Indexed keywords

KERNEL TRICK; LEASTSQUARE ALGORITHM; MATHEMATICAL FOUNDATIONS; PERFORMANCE; REGULARIZED LEAST SQUARES; REPRODUCING KERNEL HILBERT SPACES; SIMPLE++; SPARSE REPRESENTATION; STRUCTURE RISK MINIMIZATION PRINCIPLES; SUPPORT VECTORS MACHINE;

EID: 84932622260     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2004.331     Document Type: Conference Paper
Times cited : (2)

References (36)
  • 1
    • 0010689456 scopus 로고
    • Some related article i wrote
    • I. M. Author, 'Some Related Article I Wrote, ' Some Fine Journal, Vol. 17, pp. 1-100, 1987.
    • (1987) Some Fine Journal , vol.17 , pp. 1-100
    • Author, I.M.1
  • 3
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using akernel approach
    • G. Baudat and F. Anouar. Generalized discriminant analysis using akernel approach. Neural Computation, Vol. 12, pp. 2385-2404, 2000.
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
    • P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3):503-514, 1989.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 10
    • 0010999635 scopus 로고
    • On the asymptotic complexity of matrix multiplocation
    • Aug
    • S. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplocation. SIAM Journal on Computing, 11(3):472-492, Aug. 1982.
    • (1982) SIAM Journal on Computing , vol.11 , Issue.3 , pp. 472-492
    • Coppersmith, S.1    Winograd, S.2
  • 16
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for non orthogonal problems
    • A. Hoerl and R. Kennard. Ridge regression: biased estimation for non orthogonal problems. Technometrics, 12(1):55-82, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-82
    • Hoerl, A.1    Kennard, R.2
  • 17
    • 80054744124 scopus 로고
    • The theory of approximate methods and their application to the numerical solution of singular integral equations
    • V. Ivanov. The Theory of Approximate Methods and Their Application to the Numerical Solution of Singular Integral Equations. Nordhoff International, 1976.
    • (1976) Nordhoff International
    • Ivanov, V.1
  • 18
    • 0000900996 scopus 로고    scopus 로고
    • A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-te st split
    • M. Kearns. A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-te st split. Neural Computation, 9(5):43-1161, 1997.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 43-1161
    • Kearns, M.1
  • 19
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. MacKay. The evidence framework applied to classification networks. Neural Computation, 4:698-714, 1992.
    • (1992) Neural Computation , vol.4 , pp. 698-714
    • Mackay, D.1
  • 21
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78:1481-1497, 1988.
    • (1988) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 22
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • May
    • T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the AMS, 50(5):537-544, May 2003.
    • (2003) Notices of the AMS , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 24
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • J. Rissanen. Modelling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 25
    • 84898990165 scopus 로고    scopus 로고
    • The kernel trick for distances
    • In T. K. Leen, T. G. Dietterich, and V. Tresp, editors The MIT Press
    • B. Schölkopf. The kernel trick for distances. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advanc es in Neural Information Processing Systems, volume 13, pages 301-307. The MIT Press, 2001.
    • (2001) Advanc Es in Neural Information Processing Systems , vol.13 , pp. 301-307
    • Schölkopf, B.1
  • 27
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • September
    • B. Scholkopf and etal. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000-1017, September 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1000-1017
    • Scholkopf, B.1
  • 31
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Royal Statist. Soc. Ser. B, 36:111-147, 1974.
    • (1974) J. Royal Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 32
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • V. Strassen. Gaussian elimination is not optimal. Numerical Mathematics, 13:354-356, 1969.
    • (1969) Numerical Mathematics , vol.13 , pp. 354-356
    • Strassen, V.1
  • 36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.