-
2
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
COI: 1:CAS:528:DC%2BD1cXltFCmtLk%3D, PID: 18428020
-
Peltola SM, Melchels FP, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008; 40:268–280.
-
(2008)
Ann Med
, vol.40
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.2
Grijpma, D.W.3
Kellomäki, M.4
-
3
-
-
84908326281
-
Control of scaffold degradation in tissue engineering: a review
-
COI: 1:CAS:528:DC%2BC2cXhs1OktLvO, PID: 24547761
-
Zhang H, Zhou L, Zhang W. Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 2014;20:492–502.
-
(2014)
Tissue Eng Part B Rev
, vol.20
, pp. 492-502
-
-
Zhang, H.1
Zhou, L.2
Zhang, W.3
-
4
-
-
77956481502
-
Design of three-dimensional biomimetic scaffolds
-
PID: 20597126
-
Owen SC, Shoichet MS. Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res A 2010;94:1321–1331.
-
(2010)
J Biomed Mater Res A
, vol.94
, pp. 1321-1331
-
-
Owen, S.C.1
Shoichet, M.S.2
-
5
-
-
0027178750
-
Design of synthetic polymeric structures for cell transplantation and tissue engineering
-
COI: 1:CAS:528:DyaK2cXhsVektL4%3D, PID: 10146238
-
Cohen S, Baño MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater 1993;13:3–10.
-
(1993)
Clin Mater
, vol.13
, pp. 3-10
-
-
Cohen, S.1
Baño, M.C.2
Cima, L.G.3
Allcock, H.R.4
Vacanti, J.P.5
Vacanti, C.A.6
-
6
-
-
0034798881
-
Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices
-
COI: 1:CAS:528:DC%2BD3MXmt1Olt7k%3D, PID: 11587587
-
Li Y, Ma T, Kniss DA, Lasky LC, Yang ST. Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 2001;17:935–944.
-
(2001)
Biotechnol Prog
, vol.17
, pp. 935-944
-
-
Li, Y.1
Ma, T.2
Kniss, D.A.3
Lasky, L.C.4
Yang, S.T.5
-
7
-
-
82355185866
-
Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication
-
COI: 1:CAS:528:DC%2BC3MXpvFaitbc%3D, PID: 21830198
-
Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 2012;97:83–93.
-
(2012)
Biopolymers
, vol.97
, pp. 83-93
-
-
Hoque, M.E.1
Chuan, Y.L.2
Pashby, I.3
-
8
-
-
84864237663
-
Rapid prototyping for biomedical engineering: current capabilities and challenges
-
COI: 1:CAS:528:DC%2BC38Xht1Oks73O, PID: 22524389
-
Lantada AD, Morgado PL. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu Rev Biomed Eng 2012; 14:73–96.
-
(2012)
Annu Rev Biomed Eng
, vol.14
, pp. 73-96
-
-
Lantada, A.D.1
Morgado, P.L.2
-
9
-
-
0038537367
-
Scaffolds and biomaterials for tissue engineering: a review of clinical applications
-
COI: 1:STN:280:DC%2BD3s3jtlOgug%3D%3D, PID: 12755749
-
Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 2003;28:165–172.
-
(2003)
Clin Otolaryngol Allied Sci
, vol.28
, pp. 165-172
-
-
Vats, A.1
Tolley, N.S.2
Polak, J.M.3
Gough, J.E.4
-
10
-
-
1642319363
-
Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
-
COI: 1:CAS:528:DC%2BD2cXitlWqsLc%3D, PID: 15046905
-
Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004;25:4149–4161.
-
(2004)
Biomaterials
, vol.25
, pp. 4149-4161
-
-
Woodfield, T.B.1
Malda, J.2
de Wijn, J.3
Péters, F.4
van Riesle, J.B.C.A.5
-
12
-
-
0037376632
-
Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
-
COI: 1:CAS:528:DC%2BD3sXis1SnsQ%3D%3D, PID: 12527290
-
Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 2003;24:1487–1497.
-
(2003)
Biomaterials
, vol.24
, pp. 1487-1497
-
-
Sachlos, E.1
Reis, N.2
Ainsley, C.3
Derby, B.4
Czernuszka, J.T.5
-
13
-
-
34347343787
-
Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping
-
PID: 17183564
-
Yeong WY, Chua CK, Leong KF, Chandrasekaran M, Lee MW. Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. J Biomed Mater Res B Appl Biomater 2007;82:260–266.
-
(2007)
J Biomed Mater Res B Appl Biomater
, vol.82
, pp. 260-266
-
-
Yeong, W.Y.1
Chua, C.K.2
Leong, K.F.3
Chandrasekaran, M.4
Lee, M.W.5
-
14
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
-
Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012;33:6020–6041.
-
(2012)
Biomaterials
, vol.33
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
Van Vlierberghe, S.4
Dubruel, P.5
-
15
-
-
84863906559
-
A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: fabrication, mechanical properties, and cellular activity
-
COI: 1:CAS:528:DC%2BC38XhtVCjs7vM
-
Ahn S, Kim Y, Lee H, Kim G. A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: fabrication, mechanical properties, and cellular activity. J Mater Chem 2012;22:15901–15909.
-
(2012)
J Mater Chem
, vol.22
, pp. 15901-15909
-
-
Ahn, S.1
Kim, Y.2
Lee, H.3
Kim, G.4
-
16
-
-
78650870632
-
A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation
-
Ahn S, Koh YH, Kim G. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation. J Micromech Microeng 2010;20:065015.
-
(2010)
J Micromech Microeng
, vol.20
, pp. 065015
-
-
Ahn, S.1
Koh, Y.H.2
Kim, G.3
-
17
-
-
84871036954
-
Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage
-
COI: 1:CAS:528:DC%2BC38XhvVSlsbnL, PID: 23228420
-
Ma R, Li M, Luo J, Yu H, Sun Y, Cheng S, et al. Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage. Biomaterials 2013;34:1790–1798.
-
(2013)
Biomaterials
, vol.34
, pp. 1790-1798
-
-
Ma, R.1
Li, M.2
Luo, J.3
Yu, H.4
Sun, Y.5
Cheng, S.6
-
18
-
-
40649115896
-
A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BD1cXjtlSitrg%3D, PID: 18313139
-
Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 2008;29:2378–2387.
-
(2008)
Biomaterials
, vol.29
, pp. 2378-2387
-
-
Yang, Q.1
Peng, J.2
Guo, Q.3
Huang, J.4
Zhang, L.5
Yao, J.6
-
19
-
-
77349114954
-
Cartilage engineering using cell-derived extracellular matrix scaffold in vitro
-
PID: 19437434
-
Jin CZ, Choi BH, Park SR, Min BH. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J Biomed Mater Res A 2010;92: 1567–1577.
-
(2010)
J Biomed Mater Res A
, vol.92
, pp. 1567-1577
-
-
Jin, C.Z.1
Choi, B.H.2
Park, S.R.3
Min, B.H.4
-
20
-
-
77952582149
-
The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes
-
COI: 1:CAS:528:DC%2BC3cXlslegtLw%3D, PID: 20394983
-
Choi KH, Choi BH, Park SR, Kim BJ, Min BH. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials 2010;31:5355–5365.
-
(2010)
Biomaterials
, vol.31
, pp. 5355-5365
-
-
Choi, K.H.1
Choi, B.H.2
Park, S.R.3
Kim, B.J.4
Min, B.H.5
-
21
-
-
84890189971
-
Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering
-
Tang C, Xu Y, Jin C, Min BH, Li Z, Pei X, et al. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering. Artif Organs 2013;37:e179–E190.
-
(2013)
Artif Organs
, vol.37
, pp. 179-E190
-
-
Tang, C.1
Xu, Y.2
Jin, C.3
Min, B.H.4
Li, Z.5
Pei, X.6
-
22
-
-
33847664781
-
In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold
-
COI: 1:CAS:528:DC%2BD2sXksVCru7s%3D, PID: 17343693
-
Jin CZ, Park SR, Choi BH, Park K, Min BH. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Artif Organs 2007;31:183–192.
-
(2007)
Artif Organs
, vol.31
, pp. 183-192
-
-
Jin, C.Z.1
Park, S.R.2
Choi, B.H.3
Park, K.4
Min, B.H.5
-
23
-
-
80054685640
-
A comparative biocompatibility study of chondrocyte-derived ECM and silk fibroin scaffolds In vitro and in rat acute traumatic brain injury
-
Kim KH, Kim MH, Lim YH, Park SR, Choi BH, Park HC, et al. A comparative biocompatibility study of chondrocyte-derived ECM and silk fibroin scaffolds In vitro and in rat acute traumatic brain injury. TERM 2009;6:1420–1428.
-
(2009)
TERM
, vol.6
, pp. 1420-1428
-
-
Kim, K.H.1
Kim, M.H.2
Lim, Y.H.3
Park, S.R.4
Choi, B.H.5
Park, H.C.6
-
24
-
-
84872538060
-
Cartilage tissue engineering using chondrocyte-derived extracellular matrix scaffold suppressed vessel invasion during chondrogenesis of mesenchymal stem cells in vivo
-
COI: 1:CAS:528:DC%2BC38XhslyjsLvF
-
Choi KH, Song B, Choi BH, Lee M, Park SR, Min BH. Cartilage tissue engineering using chondrocyte-derived extracellular matrix scaffold suppressed vessel invasion during chondrogenesis of mesenchymal stem cells in vivo. Tissue Eng Regen Med 2012;9:43–50.
-
(2012)
Tissue Eng Regen Med
, vol.9
, pp. 43-50
-
-
Choi, K.H.1
Song, B.2
Choi, B.H.3
Lee, M.4
Park, S.R.5
Min, B.H.6
-
25
-
-
84867557331
-
Using Cartilage Extracellular Matrix (CECM) membrane to enhance the reparability of the bone marrow stimulation technique for articular cartilage defect in canine model
-
COI: 1:CAS:528:DC%2BC38Xos1aktL0%3D
-
Li TZ, Jin CZ, Choi BH, Kim MS, Kim YJ, Park SR, et al. Using Cartilage Extracellular Matrix (CECM) membrane to enhance the reparability of the bone marrow stimulation technique for articular cartilage defect in canine model. Adv Funct Mater 2012;22:4292–4300.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 4292-4300
-
-
Li, T.Z.1
Jin, C.Z.2
Choi, B.H.3
Kim, M.S.4
Kim, Y.J.5
Park, S.R.6
-
26
-
-
84866155045
-
Antiangiogenic and anticancer molecules in cartilage
-
Patra D, Sandell LJ. Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med 2012;14:e10.
-
(2012)
Expert Rev Mol Med
, vol.14
, pp. 10
-
-
Patra, D.1
Sandell, L.J.2
-
27
-
-
65649152928
-
Direct fabrication of a hybrid cell/hydrogel construct via a double-nozzle assembling technology
-
Li SJ, Xiong Z, Wang XH, Yan YN, Liu HX, Zhang RJ. Direct fabrication of a hybrid cell/hydrogel construct via a double-nozzle assembling technology. J Bioact Compat Polym 2009;24:249–264.
-
(2009)
J Bioact Compat Polym
, vol.24
, pp. 249-264
-
-
Li, S.J.1
Xiong, Z.2
Wang, X.H.3
Yan, Y.N.4
Liu, H.X.5
Zhang, R.J.6
-
28
-
-
33745452953
-
Fabrication of soft and hard biocompatible scaffolds using 3D-Bioplotting
-
Bartolo PJ, Mateus AJ, Batista FC, Almeida HA, Vasco JC, Correia MA, (eds), Taylor and Francis, London
-
Carvalho C, Landers R, Mulhaupt R, Hubner U, Schmelzeisen R. Fabrication of soft and hard biocompatible scaffolds using 3D-Bioplotting. In: Bartolo PJ, Mateus AJ, Batista FC, Almeida HA, Vasco JC, Correia MA, et al., editors. Virtual modelling and rapid manufacturing-advanced research in virtual and rapid prototyping. London: Taylor and Francis;2005. p.97–102.
-
(2005)
Virtual modelling and rapid manufacturing-advanced research in virtual and rapid prototyping
, pp. 97-102
-
-
Carvalho, C.1
Landers, R.2
Mulhaupt, R.3
Hubner, U.4
Schmelzeisen, R.5
-
29
-
-
0346634885
-
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
-
COI: 1:CAS:528:DC%2BD38XmsVeru74%3D, PID: 12322962
-
Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 2002;23:4437–4447.
-
(2002)
Biomaterials
, vol.23
, pp. 4437-4447
-
-
Landers, R.1
Hübner, U.2
Schmelzeisen, R.3
Mülhaupt, R.4
-
30
-
-
79958074853
-
Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
-
PID: 21504055
-
Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 2011;98:160–170.
-
(2011)
J Biomed Mater Res B Appl Biomater
, vol.98
, pp. 160-170
-
-
Chang, C.C.1
Boland, E.D.2
Williams, S.K.3
Hoying, J.B.4
-
31
-
-
0036892817
-
Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering
-
COI: 1:CAS:528:DC%2BD3sXptFOq, PID: 12542954
-
Vozzi G, Previti A, De Rossi D, Ahluwalia A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 2002;8:1089–1098.
-
(2002)
Tissue Eng
, vol.8
, pp. 1089-1098
-
-
Vozzi, G.1
Previti, A.2
De Rossi, D.3
Ahluwalia, A.4
-
32
-
-
78649614983
-
The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system
-
PID: 20811107
-
Buyukhatipoglu K, Jo W, Sun W, Clyne AM. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system. Biofabrication 2009;1:035003.
-
(2009)
Biofabrication
, vol.1
, pp. 035003
-
-
Buyukhatipoglu, K.1
Jo, W.2
Sun, W.3
Clyne, A.M.4
-
33
-
-
77954960401
-
Bioprinted nanoparticles for tissue engineering applications
-
COI: 1:CAS:528:DC%2BC3cXpt1Cksrc%3D, PID: 19769526
-
Buyukhatipoglu K, Chang R, Sun W, Clyne AM. Bioprinted nanoparticles for tissue engineering applications. Tissue Eng Part C Methods 2010; 16:631–642.
-
(2010)
Tissue Eng Part C Methods
, vol.16
, pp. 631-642
-
-
Buyukhatipoglu, K.1
Chang, R.2
Sun, W.3
Clyne, A.M.4
-
34
-
-
0028360544
-
Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates
-
COI: 1:STN:280:DyaK2M%2FgsFyksQ%3D%3D, PID: 7522866
-
Wake MC, Patrick CW Jr, Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 1994;3:339–343.
-
(1994)
Cell Transplant
, vol.3
, pp. 339-343
-
-
Wake, M.C.1
Patrick, C.W.2
Mikos, A.G.3
-
35
-
-
0034609615
-
Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period
-
COI: 1:CAS:528:DC%2BD3cXkslagtrY%3D, PID: 10880079
-
Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 2000;51:376–382.
-
(2000)
J Biomed Mater Res
, vol.51
, pp. 376-382
-
-
Holy, C.E.1
Shoichet, M.S.2
Davies, J.E.3
-
36
-
-
84899575693
-
3D printing of composite tissue with complex shape applied to ear regeneration
-
PID: 24464765
-
Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 2014;6:024103.
-
(2014)
Biofabrication
, vol.6
, pp. 024103
-
-
Lee, J.S.1
Hong, J.M.2
Jung, J.W.3
Shim, J.H.4
Oh, J.H.5
Cho, D.W.6
|