메뉴 건너뛰기




Volumn , Issue , 2014, Pages 176-184c

Application of ensemble decision tree classifiers to zig bee device network authentication using RF-DNA fingerprinting

Author keywords

Adaboost; Authentication; GRLVQI; MDA ML; Random forest; RF DNA fingerprinting; Verification; ZigBee

Indexed keywords

AD HOC NETWORKS; ADAPTIVE BOOSTING; AUTHENTICATION; DECISION TREES; DISCRIMINANT ANALYSIS; DNA; INTELLIGENT CONTROL; RELIABILITY ANALYSIS; SOFTWARE ARCHITECTURE; VECTOR QUANTIZATION; VERIFICATION; ZIGBEE;

EID: 84931091579     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (32)
  • 2
    • 18144421228 scopus 로고    scopus 로고
    • Zigbee and bluetooth strengths and weaknesses for industrial applications
    • Baker, N., 2005. Zigbee And Bluetooth Strengths And Weaknesses For Industrial Applications. Computing & Control Engineering Journal, 16(2), Pp. 20-25.
    • (2005) Computing & Control Engineering Journal , vol.16 , Issue.2 , pp. 20-25
    • Baker, N.1
  • 3
    • 34047126869 scopus 로고    scopus 로고
    • Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards
    • Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A. And Hu, Y.F., 2007. Wireless Sensor Networks: A Survey On The State Of The Art And The 802.15.4 And Zigbee Standards. Computer Communications, 30(7), Pp. 1655-1695.
    • (2007) Computer Communications , vol.30 , Issue.7 , pp. 1655-1695
    • Baronti, P.1    Pillai, P.2    Chook, V.W.C.3    Chessa, S.4    Gotta, A.5    Hu, Y.F.6
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001. Random Forests. Machine Learning, 45(1), Pp. 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman, L., 2001. Statistical Modeling: The Two Cultures. Statistical Science, 16(3), Pp. 199-231.
    • (2001) Statistical Science , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 6
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Buhlmann, P. And Hothorn, T., 2007. Boosting Algorithms: Regularization, Prediction And Model Fitting. Statistical Science, 22(4), Pp. 477-505.
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 477-505
    • Buhlmann, P.1    Hothorn, T.2
  • 9
    • 77958554487 scopus 로고    scopus 로고
    • Considerations on security in zigbee networks, sensor networks, ubiquitous, and trustworthy computing (sutc)
    • Ieee
    • Dini, G. And Tiloca, M., 2010. Considerations On Security In Zigbee Networks, Sensor Networks, Ubiquitous, And Trustworthy Computing (Sutc), 2010 Ieee International Conference On 2010, Ieee, Pp. 58-65.
    • (2010) 2010 Ieee International Conference on 2010 , pp. 58-65
    • Dini, G.1    Tiloca, M.2
  • 10
    • 84951871178 scopus 로고    scopus 로고
    • Zigbee device verification for securing industrial control and building automation systems
    • J. Butts And S. Shenoi, Eds, 7th Edn. Springer
    • Dubendorfer, C.K., Ramsey, B.W. And Temple Michael A., 2013. Zigbee Device Verification For Securing Industrial Control And Building Automation Systems. In: J. Butts And S. Shenoi, Eds, Critical Infrastructure Protection. 7th Edn. Springer, .
    • (2013) Critical Infrastructure Protection
    • Temple, M.A.1    Dubendorfer, C.K.2    Ramsey, B.W.3
  • 12
    • 18144376731 scopus 로고    scopus 로고
    • The emergence of zigbee in building automation and industrial controls
    • Egan, D., 2005. The Emergence Of Zigbee In Building Automation And Industrial Controls. Computing And Control Engineering, 16(2), Pp. 14-19.
    • (2005) Computing and Control Engineering , vol.16 , Issue.2 , pp. 14-19
    • Egan, D.1
  • 13
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B. And Villmann, T., 2002. Generalized Relevance Learning Vector Quantization. Neural Networks, 15(8), Pp. 1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 20
    • 33750574349 scopus 로고    scopus 로고
    • Using discriminant analysis for multi-class classification: An experimental investigation
    • Li, T., Zhu, S. And Ogihara, M., 2006. Using Discriminant Analysis For Multi-Class Classification: An Experimental Investigation. Knowledge And Information Systems, 10(4), Pp. 453-472.
    • (2006) Knowledge and Information Systems , vol.10 , Issue.4 , pp. 453-472
    • Li, T.1    Zhu, S.2    Ogihara, M.3
  • 22
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W. And Hamprecht, F.A., 2009. A Comparison Of Random Forest And Its Gini Importance With Standard Chemometric Methods For The Feature Selection And Classification Of Spectral Data. Bmc Bioinformatics, 10(1), Pp. 213.
    • (2009) Bmc Bioinformatics , vol.10 , Issue.1
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Bachert, P.5    Petrich, W.6    Hamprecht, F.A.7
  • 31
    • 80055040638 scopus 로고    scopus 로고
    • Killerbee: Practical zigbee exploitation framework
    • San Diego 2009
    • Wright, J., 2009. Killerbee: Practical Zigbee Exploitation Framework, 11th Toorcon Conference, San Diego 2009.
    • (2009) 11th Toorcon Conference
    • Wright, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.