-
1
-
-
78650399614
-
Hybrid Wrapper-Filter Approaches for Input Feature Selection Using Maximum Relevance and Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA)
-
Huda, S., Yearwood, J., Strainieri, A.: Hybrid Wrapper-Filter Approaches for Input Feature Selection Using Maximum Relevance and Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA). In: 4th International Conference on Network and System Security, pp. 442-449 (2010)
-
(2010)
4th International Conference on Network and System Security
, pp. 442-449
-
-
Huda, S.1
Yearwood, J.2
Strainieri, A.3
-
2
-
-
3042532685
-
Filter versus wrapper gene selection approaches in DNA microarray domains
-
Inza, I., Larrañaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine 31, 91-103 (2004)
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, pp. 91-103
-
-
Inza, I.1
Larrañaga, P.2
Blanco, R.3
Cerrolaza, A.J.4
-
4
-
-
44349110097
-
Identification of gene transcript signatures predictive for er and lymph node status using a stepwise forward selection ann modelling approach
-
Lancashire, L.J., Rees, R.C., Ball, G.R.: Identification of gene transcript signatures predictive for er and lymph node status using a stepwise forward selection ann modelling approach. Artif. Intell. Med. 43, 99-111 (2008)
-
(2008)
Artif. Intell. Med.
, vol.43
, pp. 99-111
-
-
Lancashire, L.J.1
Rees, R.C.2
Ball, G.R.3
-
5
-
-
44449145580
-
A comparative study of different machine learning methods on microarray gene expression data
-
Pirooznia, M., Yang, J., Yang, M.Q., Deng, Y.: A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 9, S13 (2008)
-
(2008)
BMC Genomics
, vol.9
-
-
Pirooznia, M.1
Yang, J.2
Yang, M.Q.3
Deng, Y.4
-
6
-
-
0036532821
-
A hybrid filter/wrapper approach of feature selection using information theory
-
Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35, 835-846 (2002)
-
(2002)
Pattern Recognition
, vol.35
, pp. 835-846
-
-
Sebban, M.1
Nock, R.2
-
7
-
-
78649936404
-
Multiclass Pattern Recognition Extension for the New C-Mantec Constructive Neural Network Algorithm
-
Subirats, J.L., Jerez, J.M., Gómez, I., Franco, L.: Multiclass Pattern Recognition Extension for the New C-Mantec Constructive Neural Network Algorithm. Cognitive Computation 2, 285-290 (2010)
-
(2010)
Cognitive Computation
, vol.2
, pp. 285-290
-
-
Subirats, J.L.1
Jerez, J.M.2
Gómez, I.3
Franco, L.4
-
8
-
-
79551569946
-
Constructive neural networks to predict breast cancer outcome by using gene expression profiles
-
García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. Springer, Heidelberg
-
Urda, D., Subirats, J.L., Franco, L., Jerez, J.M.: Constructive neural networks to predict breast cancer outcome by using gene expression profiles. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 317-326. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6096
, pp. 317-326
-
-
Urda, D.1
Subirats, J.L.2
Franco, L.3
Jerez, J.M.4
-
9
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
West, M.: Bayesian factor regression models in the "large p, small n" paradigm. Bayesian statistics 7, 723-732 (2003)
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
10
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Olson, J.A., Marks, J.R., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS 98, 11462-11467 (2001)
-
(2001)
PNAS
, vol.98
, pp. 11462-11467
-
-
West, M.1
Blanchette, C.2
Dressman, H.3
Huang, E.4
Ishida, S.5
Spang, R.6
Zuzan, H.7
Olson, J.A.8
Marks, J.R.9
Nevins, J.R.10
|