메뉴 건너뛰기




Volumn 119, Issue 22, 2015, Pages 6525-6535

How cellulose elongates-A QM/MM study of the molecular mechanism of cellulose polymerization in bacterial CESA

Author keywords

[No Author keywords available]

Indexed keywords

CARBON; CELLULOSE; GLUCOSE; MOLECULES; POLYMERIZATION; POLYMERS; QUANTUM THEORY; RATE CONSTANTS;

EID: 84930959537     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/acs.jpcb.5b01433     Document Type: Article
Times cited : (12)

References (54)
  • 2
    • 33749579598 scopus 로고    scopus 로고
    • Cellulose Synthesis in Higher Plants
    • Somerville, C. Cellulose Synthesis in Higher Plants Annu. Rev. Cell Dev. Biol. 2006, 22, 53-78
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 53-78
    • Somerville, C.1
  • 3
    • 77749273664 scopus 로고    scopus 로고
    • What Do We Really Know about Cellulose Biosynthesis in Higher Plants?
    • Guerriero, G.; Fugelstad, J.; Bulone, V. What Do We Really Know About Cellulose Biosynthesis in Higher Plants? J. Integr. Plant Biol. 2010, 52, 161-175
    • (2010) J. Integr. Plant Biol. , vol.52 , pp. 161-175
    • Guerriero, G.1    Fugelstad, J.2    Bulone, V.3
  • 4
    • 0036214650 scopus 로고    scopus 로고
    • Molecular Biology of Cellulose Production in Bacteria
    • Römling, U. Molecular Biology of Cellulose Production in Bacteria Res. Microbiol. 2002, 153, 205-212
    • (2002) Res. Microbiol. , vol.153 , pp. 205-212
    • Römling, U.1
  • 5
    • 80053439213 scopus 로고    scopus 로고
    • The Dickeya Dadantii Biofilm Matrix Consists of Cellulose Nanofibres, and is an Emergent Property Dependent Upon the Type III Secretion System and the Cellulose Synthesis Operon
    • Jahn, C. E.; Selimi, D. A.; Barak, J. D.; Charkowski, A. O. The Dickeya Dadantii Biofilm Matrix Consists of Cellulose Nanofibres, and is an Emergent Property Dependent Upon the Type III Secretion System and the Cellulose Synthesis Operon Microbiology 2011, 157, 2733-2744
    • (2011) Microbiology , vol.157 , pp. 2733-2744
    • Jahn, C.E.1    Selimi, D.A.2    Barak, J.D.3    Charkowski, A.O.4
  • 6
    • 0035859467 scopus 로고    scopus 로고
    • Antibiotic Resistance of Bacteria in Biofilms
    • Stewart, P. S.; William Costerton, J. Antibiotic Resistance of Bacteria in Biofilms Lancet 2001, 358, 135-138
    • (2001) Lancet , vol.358 , pp. 135-138
    • Stewart, P.S.1    William Costerton, J.2
  • 7
    • 0025220430 scopus 로고
    • Identification of the Uridine 5′-Diphosphoglucose (UDP-Glc) Binding Subunit of Cellulose Synthase in Acetobacter Xylinum Using the Photoaffinity Probe 5-Azido-UDP-Glc
    • Lin, F. C.; Brown, R.; Drake, R.; Haley, B. Identification of the Uridine 5′-Diphosphoglucose (UDP-Glc) Binding Subunit of Cellulose Synthase in Acetobacter Xylinum Using the Photoaffinity Probe 5-Azido-UDP-Glc J. Biol. Chem. 1990, 265, 4782-4784
    • (1990) J. Biol. Chem. , vol.265 , pp. 4782-4784
    • Lin, F.C.1    Brown, R.2    Drake, R.3    Haley, B.4
  • 8
    • 84872141928 scopus 로고    scopus 로고
    • Crystallographic Snapshot of Cellulose Synthesis and Membrane Translocation
    • Morgan, J. L. W.; Strumillo, J.; Zimmer, J. Crystallographic Snapshot of Cellulose Synthesis and Membrane Translocation Nature 2013, 493, 181-192
    • (2013) Nature , vol.493 , pp. 181-192
    • Morgan, J.L.W.1    Strumillo, J.2    Zimmer, J.3
  • 9
    • 33748584863 scopus 로고    scopus 로고
    • Mechanisms and Free Energies of Enzymatic Reactions
    • Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G. Mechanisms and Free Energies of Enzymatic Reactions Chem. Rev. 2006, 106, 3188-3209
    • (2006) Chem. Rev. , vol.106 , pp. 3188-3209
    • Gao, J.1    Ma, S.2    Major, D.T.3    Nam, K.4    Pu, J.5    Truhlar, D.G.6
  • 10
    • 79959931965 scopus 로고    scopus 로고
    • QM/MM Insight on Enzymatic Reactions of Glycosyltransferases
    • Tvaroska, I. QM/MM Insight on Enzymatic Reactions of Glycosyltransferases Mini-Rev. Org. Chem. 2011, 8, 263-269
    • (2011) Mini-Rev. Org. Chem. , vol.8 , pp. 263-269
    • Tvaroska, I.1
  • 11
    • 0017100947 scopus 로고
    • Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme
    • Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme J. Mol. Biol. 1976, 103, 227-249
    • (1976) J. Mol. Biol. , vol.103 , pp. 227-249
    • Warshel, A.1    Levitt, M.2
  • 12
    • 33845956263 scopus 로고    scopus 로고
    • Catalytic Mechanism of Glycosyltransferases: Hybrid Quantum Mechanical/Molecular Mechanical Study of the Inverting N-Acetylglucosaminyltransferase i
    • Kozmon, S.; Tvaroska, I. Catalytic Mechanism of Glycosyltransferases: Hybrid Quantum Mechanical/Molecular Mechanical Study of the Inverting N-Acetylglucosaminyltransferase I J. Am. Chem. Soc. 2006, 128, 16921-16927
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 16921-16927
    • Kozmon, S.1    Tvaroska, I.2
  • 13
    • 68549111058 scopus 로고    scopus 로고
    • Hybrid Quantum Mechanical/Molecular Mechanical Investigation of the β-1,4-Galactosyltransferase-I Mechanism
    • Krupicka, M.; Tvaroska, I. Hybrid Quantum Mechanical/Molecular Mechanical Investigation of the β-1,4-Galactosyltransferase-I Mechanism J. Phys. Chem. B 2009, 113, 11314-11319
    • (2009) J. Phys. Chem. B , vol.113 , pp. 11314-11319
    • Krupicka, M.1    Tvaroska, I.2
  • 14
    • 0037036704 scopus 로고    scopus 로고
    • Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction
    • Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction J. Am. Chem. Soc. 2002, 124, 9074-9082
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 9074-9082
    • Nishiyama, Y.1    Langan, P.2    Chanzy, H.3
  • 15
    • 78650978686 scopus 로고    scopus 로고
    • Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and Other (1→ 4)-β-D-Glycans
    • Carpita, N. C. Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and Other (1→ 4)-β-D-Glycans Plant Physiol. 2011, 155, 171-184
    • (2011) Plant Physiol. , vol.155 , pp. 171-184
    • Carpita, N.C.1
  • 16
    • 0028986927 scopus 로고
    • Multidomain Architecture of β-Glycosyltransferases: Implications for Mechanism of Action
    • Saxena, I. M.; Brown, R. M., Jr.; Fevre, M.; Geremia, R. A.; Henrissat, B. Multidomain Architecture of β-Glycosyltransferases: Implications for Mechanism of Action J. Bacteriol. 1995, 177, 1419-1424
    • (1995) J. Bacteriol. , vol.177 , pp. 1419-1424
    • Saxena, I.M.1    Brown, R.M.2    Fevre, M.3    Geremia, R.A.4    Henrissat, B.5
  • 17
    • 0033499327 scopus 로고    scopus 로고
    • Cellulose Biosynthesis: Exciting Times for a Difficult Field of Study
    • Delmer, D. P. Cellulose Biosynthesis: Exciting Times for a Difficult Field of Study Annu. Rev. Plant Biol. 1999, 50, 245-276
    • (1999) Annu. Rev. Plant Biol. , vol.50 , pp. 245-276
    • Delmer, D.P.1
  • 18
    • 77953081364 scopus 로고    scopus 로고
    • Functional States of Homooligomers: Insights from the Evolution of Glycosyltransferases
    • Hashimoto, K.; Madej, T.; Bryant, S. H.; Panchenko, A. R. Functional States of Homooligomers: Insights from the Evolution of Glycosyltransferases J. Mol. Biol. 2010, 399, 196-206
    • (2010) J. Mol. Biol. , vol.399 , pp. 196-206
    • Hashimoto, K.1    Madej, T.2    Bryant, S.H.3    Panchenko, A.R.4
  • 19
    • 0032493440 scopus 로고    scopus 로고
    • Activity of the Yeast MNN1 α-1, 3-Mannosyltransferase Requires a Motif Conserved in Many Other Families of Glycosyltransferases
    • Wiggins, C. A.; Munro, S. Activity of the Yeast MNN1 α-1, 3-Mannosyltransferase Requires a Motif Conserved in Many Other Families of Glycosyltransferases Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 7945-7950
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 7945-7950
    • Wiggins, C.A.1    Munro, S.2
  • 21
    • 84887086438 scopus 로고    scopus 로고
    • BcsA and BcsB Form the Catalytically Active Core of Bacterial Cellulose Synthase Sufficient for in vitro Cellulose Synthesis
    • Omadjela, O.; Narahari, A.; Strumillo, J.; Mélida, H.; Mazur, O.; Bulone, V.; Zimmer, J. BcsA and BcsB Form the Catalytically Active Core of Bacterial Cellulose Synthase Sufficient for in vitro Cellulose Synthesis Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17856-17861
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 17856-17861
    • Omadjela, O.1    Narahari, A.2    Strumillo, J.3    Mélida, H.4    Mazur, O.5    Bulone, V.6    Zimmer, J.7
  • 22
    • 49749148399 scopus 로고    scopus 로고
    • Structural Basis of UDP-Galactose Binding by α-1, 3-Galactosyltransferase (α3GT): Role of Negative Charge on Aspartic Acid 316 in Structure and Activity
    • Tumbale, P.; Jamaluddin, H.; Thiyagarajan, N.; Brew, K.; Acharya, K. R. Structural Basis of UDP-Galactose Binding by α-1, 3-Galactosyltransferase (α3GT): Role of Negative Charge on Aspartic Acid 316 in Structure and Activity Biochemistry 2008, 47, 8711-8718
    • (2008) Biochemistry , vol.47 , pp. 8711-8718
    • Tumbale, P.1    Jamaluddin, H.2    Thiyagarajan, N.3    Brew, K.4    Acharya, K.R.5
  • 23
    • 84887069059 scopus 로고    scopus 로고
    • Crystal Structures of β-1, 4-Galactosyltransferase 7 Enzyme Reveal Conformational Changes and Substrate Binding
    • Tsutsui, Y.; Ramakrishnan, B.; Qasba, P. K. Crystal Structures of β-1, 4-Galactosyltransferase 7 Enzyme Reveal Conformational Changes and Substrate Binding J. Biol. Chem. 2013, 288, 31963-31970
    • (2013) J. Biol. Chem. , vol.288 , pp. 31963-31970
    • Tsutsui, Y.1    Ramakrishnan, B.2    Qasba, P.K.3
  • 24
    • 13344260674 scopus 로고
    • Biological Coordination Chemistry of Magnesium, Sodium, and Potassium Ions. Protein and Nucleotide Binding Sites
    • Black, C.; Huang, H.-W.; Cowan, J. Biological Coordination Chemistry of Magnesium, Sodium, and Potassium Ions. Protein and Nucleotide Binding Sites Coord. Chem. Rev. 1994, 135, 165-202
    • (1994) Coord. Chem. Rev. , vol.135 , pp. 165-202
    • Black, C.1    Huang, H.-W.2    Cowan, J.3
  • 25
    • 0036312670 scopus 로고    scopus 로고
    • Structure, Properties and Regulation of Magnesium Transport Proteins
    • Kehres, D. G.; Maguire, M. E. Structure, Properties and Regulation of Magnesium Transport Proteins Biometals 2002, 15, 261-270
    • (2002) Biometals , vol.15 , pp. 261-270
    • Kehres, D.G.1    Maguire, M.E.2
  • 26
    • 0035865381 scopus 로고    scopus 로고
    • Bovine α 1, 3-Galactosyltransferase Catalytic Domain Structure and its Relationship with ABO Histo-Blood Group and Glycosphingolipid Glycosyltransferases
    • Gastinel, L. N.; Bignon, C.; Misra, A. K.; Hindsgaul, O.; Shaper, J. H.; Joziasse, D. H. Bovine α 1, 3-Galactosyltransferase Catalytic Domain Structure and its Relationship with ABO Histo-Blood Group and Glycosphingolipid Glycosyltransferases EMBO J. 2001, 20, 638-649
    • (2001) EMBO J. , vol.20 , pp. 638-649
    • Gastinel, L.N.1    Bignon, C.2    Misra, A.K.3    Hindsgaul, O.4    Shaper, J.H.5    Joziasse, D.H.6
  • 27
    • 84902080356 scopus 로고    scopus 로고
    • Mechanism of Activation of Bacterial Cellulose Synthase by Cyclic di-GMP
    • Morgan, J. L.; McNamara, J. T.; Zimmer, J. Mechanism of Activation of Bacterial Cellulose Synthase by Cyclic di-GMP Nat. Struct. Mol. Biol. 2014, 21, 489-496
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 489-496
    • Morgan, J.L.1    McNamara, J.T.2    Zimmer, J.3
  • 29
    • 0033515394 scopus 로고    scopus 로고
    • A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives
    • Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives J. Mol. Struct.: THEOCHEM 1999, 461, 1-21
    • (1999) J. Mol. Struct.: THEOCHEM , vol.461 , pp. 1-21
    • Dapprich, S.1    Komáromi, I.2    Byun, K.S.3    Morokuma, K.4    Frisch, M.J.5
  • 32
    • 33646464890 scopus 로고    scopus 로고
    • Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions
    • Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions J. Chem. Theory Comput. 2006, 2, 364-382
    • (2006) J. Chem. Theory Comput. , vol.2 , pp. 364-382
    • Zhao, Y.1    Schultz, N.E.2    Truhlar, D.G.3
  • 33
    • 36549091806 scopus 로고
    • A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements
    • Petersson, G.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements J. Chem. Phys. 1988, 89, 2193-2218
    • (1988) J. Chem. Phys. , vol.89 , pp. 2193-2218
    • Petersson, G.1    Bennett, A.2    Tensfeldt, T.G.3    Al-Laham, M.A.4    Shirley, W.A.5    Mantzaris, J.6
  • 34
    • 0038035472 scopus 로고
    • A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms
    • Petersson, G.; Al-Laham, M. A. A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms J. Chem. Phys. 1991, 94, 6081-6090
    • (1991) J. Chem. Phys. , vol.94 , pp. 6081-6090
    • Petersson, G.1    Al-Laham, M.A.2
  • 36
    • 84930939148 scopus 로고    scopus 로고
    • version 9.3; Schrödinger, LLC: New York.
    • Maestro, version 9.3; Schrödinger, LLC: New York, 2012.
    • (2012) Maestro
  • 38
    • 84858752676 scopus 로고    scopus 로고
    • Hydration of Cellobiose: Structure and Dynamics of Cellobiose -(H2O)n, n = 5-25
    • Pincu, M.; Gerber, R. B. Hydration of Cellobiose: Structure and Dynamics of Cellobiose -(H2O)n, n = 5-25 Chem. Phys. Lett. 2012, 531, 52-58
    • (2012) Chem. Phys. Lett. , vol.531 , pp. 52-58
    • Pincu, M.1    Gerber, R.B.2
  • 39
    • 84961980477 scopus 로고    scopus 로고
    • Quantum Mechanical Continuum Solvation Models
    • Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models Chem. Rev. 2005, 105, 2999-3094
    • (2005) Chem. Rev. , vol.105 , pp. 2999-3094
    • Tomasi, J.1    Mennucci, B.2    Cammi, R.3
  • 40
    • 0031646313 scopus 로고    scopus 로고
    • Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory
    • Pavlov, M.; Siegbahn, P. E.; Sandström, M. Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory J. Phys. Chem. A 1998, 102, 219-228
    • (1998) J. Phys. Chem. A , vol.102 , pp. 219-228
    • Pavlov, M.1    Siegbahn, P.E.2    Sandström, M.3
  • 41
    • 2142746284 scopus 로고
    • The Activated Complex in Chemical Reactions
    • Eyring, H. The Activated Complex in Chemical Reactions J. Chem. Phys. 1935, 3, 107-115
    • (1935) J. Chem. Phys. , vol.3 , pp. 107-115
    • Eyring, H.1
  • 42
    • 33750615773 scopus 로고    scopus 로고
    • Modeling Enzymatic Reactions Involving Transition Metals
    • Siegbahn, P. E.; Borowski, T. Modeling Enzymatic Reactions Involving Transition Metals Acc. Chem. Res. 2006, 39, 729-738
    • (2006) Acc. Chem. Res. , vol.39 , pp. 729-738
    • Siegbahn, P.E.1    Borowski, T.2
  • 43
    • 2742571961 scopus 로고
    • Nonequilibrium Solvation Effects on Reaction Rates for Model SN2 Reactions in Water
    • Gertner, B. J.; Wilson, K. R.; Hynes, J. T. Nonequilibrium Solvation Effects on Reaction Rates for Model SN2 Reactions in Water J. Chem. Phys. 1989, 90, 3537-3558
    • (1989) J. Chem. Phys. , vol.90 , pp. 3537-3558
    • Gertner, B.J.1    Wilson, K.R.2    Hynes, J.T.3
  • 44
    • 33748613208 scopus 로고    scopus 로고
    • Multidimensional Tunneling, Recrossing, and the Transmission Coefficient for Enzymatic Reactions
    • Pu, J.; Gao, J.; Truhlar, D. G. Multidimensional Tunneling, Recrossing, and the Transmission Coefficient for Enzymatic Reactions Chem. Rev. 2006, 106, 3140-3169
    • (2006) Chem. Rev. , vol.106 , pp. 3140-3169
    • Pu, J.1    Gao, J.2    Truhlar, D.G.3
  • 45
    • 0037144083 scopus 로고    scopus 로고
    • Characterization of Acid Catalytic Domains for Cellulose Hydrolysis and Glucose Degradation
    • Mosier, N. S.; Ladisch, C. M.; Ladisch, M. R. Characterization of Acid Catalytic Domains for Cellulose Hydrolysis and Glucose Degradation Biotechnol. Bioeng. 2002, 79, 610-618
    • (2002) Biotechnol. Bioeng. , vol.79 , pp. 610-618
    • Mosier, N.S.1    Ladisch, C.M.2    Ladisch, M.R.3
  • 46
    • 34250835055 scopus 로고    scopus 로고
    • Cellobiose Hydrolysis Using Organic-Inorganic Hybrid Mesoporous Silica Catalysts
    • Bootsma, J. A.; Shanks, B. H. Cellobiose Hydrolysis Using Organic-Inorganic Hybrid Mesoporous Silica Catalysts Appl. Catal., A 2007, 327, 44-51
    • (2007) Appl. Catal., A , vol.327 , pp. 44-51
    • Bootsma, J.A.1    Shanks, B.H.2
  • 47
    • 0034644403 scopus 로고    scopus 로고
    • Ab Initio Molecular Orbital Study of the Catalytic Mechanism of Glycosyltransferases: Description of Reaction Pathways and Determination of Transition-State Structures for Inverting N-Acetylglucosaminyltransferases
    • Tvaroska, I.; Andre, I.; Carver, J. P. Ab Initio Molecular Orbital Study of the Catalytic Mechanism of Glycosyltransferases: Description of Reaction Pathways and Determination of Transition-State Structures for Inverting N-Acetylglucosaminyltransferases J. Am. Chem. Soc. 2000, 122, 8762-8776
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 8762-8776
    • Tvaroska, I.1    Andre, I.2    Carver, J.P.3
  • 48
    • 67649410717 scopus 로고    scopus 로고
    • The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks
    • Shen, T.; Gnanakaran, S. The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks Biophys. J. 2009, 96, 3032-3040
    • (2009) Biophys. J. , vol.96 , pp. 3032-3040
    • Shen, T.1    Gnanakaran, S.2
  • 49
    • 72849140924 scopus 로고    scopus 로고
    • Cellulose and the Twofold Screw Axis: Modeling and Experimental Arguments
    • French, A. D.; Johnson, G. P. Cellulose and the Twofold Screw Axis: Modeling and Experimental Arguments Cellulose 2009, 16, 959-973
    • (2009) Cellulose , vol.16 , pp. 959-973
    • French, A.D.1    Johnson, G.P.2
  • 50
    • 84856955513 scopus 로고    scopus 로고
    • Conformational Analysis of Cellobiose by Electronic Structure Theories
    • French, A. D.; Johnson, G. P.; Cramer, C. J.; Csonka, G. I. Conformational Analysis of Cellobiose by Electronic Structure Theories Carbohydr. Res. 2012, 350, 68-76
    • (2012) Carbohydr. Res. , vol.350 , pp. 68-76
    • French, A.D.1    Johnson, G.P.2    Cramer, C.J.3    Csonka, G.I.4
  • 51
    • 0000149351 scopus 로고
    • Conformational Analysis and Molecular Dynamics Simulation of Cellobiose and Larger Cellooligomers
    • Hardy, B.; Sarko, A. Conformational Analysis and Molecular Dynamics Simulation of Cellobiose and Larger Cellooligomers J. Comput. Chem. 1993, 14, 831-847
    • (1993) J. Comput. Chem. , vol.14 , pp. 831-847
    • Hardy, B.1    Sarko, A.2
  • 52
    • 0037027548 scopus 로고    scopus 로고
    • Ab Initio Computational Study of β-Cellobiose Conformers Using B3LYP/6-311++G
    • Strati, G. L.; Willett, J. L.; Momany, F. A. Ab Initio Computational Study of β-Cellobiose Conformers Using B3LYP/6-311++G∗ Carbohydr. Res. 2002, 337, 1833-1849
    • (2002) Carbohydr. Res. , vol.337 , pp. 1833-1849
    • Strati, G.L.1    Willett, J.L.2    Momany, F.A.3
  • 53
    • 0041315653 scopus 로고    scopus 로고
    • Rapid Chemoenzymatic Synthesis of Monodisperse Hyaluronan Oligosaccharides with Immobilized Enzyme Reactors
    • DeAngelis, P. L.; Oatman, L. C.; Gay, D. F. Rapid Chemoenzymatic Synthesis of Monodisperse Hyaluronan Oligosaccharides with Immobilized Enzyme Reactors J. Biol. Chem. 2003, 278, 35199-35203
    • (2003) J. Biol. Chem. , vol.278 , pp. 35199-35203
    • Deangelis, P.L.1    Oatman, L.C.2    Gay, D.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.