-
1
-
-
28544445148
-
Restoration of auditory nerve synapses in cats by cochlear implants
-
Ryugo D.K., et al. Restoration of auditory nerve synapses in cats by cochlear implants. Science 2005, 310:1490-1492.
-
(2005)
Science
, vol.310
, pp. 1490-1492
-
-
Ryugo, D.K.1
-
2
-
-
84888130589
-
Surface biotechnology for refining cochlear implants
-
Fei T., et al. Surface biotechnology for refining cochlear implants. Trends Biotechnol. 2013, 31:678-687.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 678-687
-
-
Fei, T.1
-
3
-
-
84924854127
-
Spinal cord stimulation for neuropathic pain: current perspectives
-
Wolter T. Spinal cord stimulation for neuropathic pain: current perspectives. J. Pain Res. 2014, 7:651-663.
-
(2014)
J. Pain Res.
, vol.7
, pp. 651-663
-
-
Wolter, T.1
-
4
-
-
36348930802
-
Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism
-
Michael J.F., et al. Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science 2007, 318:1309-1312.
-
(2007)
Science
, vol.318
, pp. 1309-1312
-
-
Michael, J.F.1
-
5
-
-
84864857136
-
Closed-loop control of epilepsy by transcranial electrical stimulation
-
Berényi A. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 2012, 337:735-737.
-
(2012)
Science
, vol.337
, pp. 735-737
-
-
Berényi, A.1
-
6
-
-
0037039812
-
Will retinal implants restore vision?
-
Zrenner E. Will retinal implants restore vision?. Science 2002, 295:1022-1025.
-
(2002)
Science
, vol.295
, pp. 1022-1025
-
-
Zrenner, E.1
-
7
-
-
84884351515
-
Visual prostheses for the blind
-
Robert K.S., et al. Visual prostheses for the blind. Trends Biotechnol. 2013, 31:562-571.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 562-571
-
-
Robert, K.S.1
-
8
-
-
84887094615
-
Modulation of cortical network activity by transcranial alternating current stimulation
-
Helfrich R.F., et al. Modulation of cortical network activity by transcranial alternating current stimulation. J. Neurosci. 2013, 33:17551-17552.
-
(2013)
J. Neurosci.
, vol.33
, pp. 17551-17552
-
-
Helfrich, R.F.1
-
9
-
-
84900297751
-
Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
-
Berenyi A., et al. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 2014, 1:1132-1149.
-
(2014)
J. Neurophysiol.
, vol.1
, pp. 1132-1149
-
-
Berenyi, A.1
-
11
-
-
27744559988
-
Implantable biomimetic microelectronic systems design
-
Wentai L., et al. Implantable biomimetic microelectronic systems design. IEEE Eng. Med. Biol. Mag. 2005, 24:66-74.
-
(2005)
IEEE Eng. Med. Biol. Mag.
, vol.24
, pp. 66-74
-
-
Wentai, L.1
-
12
-
-
85008028570
-
The feasible FES system: battery-powered BION stimulator
-
Schulman J.H. The feasible FES system: battery-powered BION stimulator. Proc. IEEE 2008, 96:1226-1239.
-
(2008)
Proc. IEEE
, vol.96
, pp. 1226-1239
-
-
Schulman, J.H.1
-
13
-
-
67651160648
-
Implanted neural interfaces: biochallenges and engineered solutions
-
Grill W.M., et al. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 2009, 11:1-24.
-
(2009)
Annu. Rev. Biomed. Eng.
, vol.11
, pp. 1-24
-
-
Grill, W.M.1
-
14
-
-
34250747837
-
Feasibility of prosthetic posture sensing via injectable electronic modules
-
Tan W., Loeb G.E. Feasibility of prosthetic posture sensing via injectable electronic modules. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15:295-309.
-
(2007)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.15
, pp. 295-309
-
-
Tan, W.1
Loeb, G.E.2
-
15
-
-
17944395994
-
Injectable microstimulator for functional electrical stimulation
-
Loeb G.E., et al. Injectable microstimulator for functional electrical stimulation. Med. Biol. Eng. Comput. 1991, 29:NS13-NS19.
-
(1991)
Med. Biol. Eng. Comput.
, vol.29
, pp. NS13-NS19
-
-
Loeb, G.E.1
-
16
-
-
84920510407
-
An asynchronous event-driven data transmitter for wireless ECG sensor nodes
-
Mansano A.L., et al. An asynchronous event-driven data transmitter for wireless ECG sensor nodes. Biomedical Circuits and Systems Conference IEEE 2014, 404-407.
-
(2014)
Biomedical Circuits and Systems Conference IEEE
, pp. 404-407
-
-
Mansano, A.L.1
-
17
-
-
77950319551
-
Microelectrodes, microelectronics, and implantable neural microsystems
-
Wise K.D., et al. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 2008, 96:1184-1202.
-
(2008)
Proc. IEEE
, vol.96
, pp. 1184-1202
-
-
Wise, K.D.1
-
18
-
-
32444437700
-
Sources and effects of electrode impedance during deep brain stimulation
-
Butson C.R., et al. Sources and effects of electrode impedance during deep brain stimulation. Clin. Neurophysiol. 2006, 117:447-454.
-
(2006)
Clin. Neurophysiol.
, vol.117
, pp. 447-454
-
-
Butson, C.R.1
-
19
-
-
2542492934
-
Electrical nerve localization: effects of cutaneous electrode placement and duration of the stimulus on motor response
-
Hadzic A., et al. Electrical nerve localization: effects of cutaneous electrode placement and duration of the stimulus on motor response. Anesthesiology 2004, 100:1526-1530.
-
(2004)
Anesthesiology
, vol.100
, pp. 1526-1530
-
-
Hadzic, A.1
-
20
-
-
0034706178
-
Dental post-operative sensitivity associated with a gallium-based restorative material
-
Dunne S.M., et al. Dental post-operative sensitivity associated with a gallium-based restorative material. Br. Dent. J. 2000, 189:310-313.
-
(2000)
Br. Dent. J.
, vol.189
, pp. 310-313
-
-
Dunne, S.M.1
-
21
-
-
0034134024
-
Biocompatibility of dental casting alloys: a review
-
Wataha J.C. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 2000, 83:223-234.
-
(2000)
J. Prosthet. Dent.
, vol.83
, pp. 223-234
-
-
Wataha, J.C.1
-
22
-
-
84926334880
-
Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-gel transition
-
Yoshida Y., et al. Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-gel transition. Polym. J. 2014, 46:632-635.
-
(2014)
Polym. J.
, vol.46
, pp. 632-635
-
-
Yoshida, Y.1
-
23
-
-
84903441793
-
Injectable bioadhesive hydrogels with innate antibacterial properties
-
Giano M.C., et al. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat. Commun. 2014, 5:4095.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4095
-
-
Giano, M.C.1
-
24
-
-
0032147082
-
Effects of regional stimulation using a miniature stimulator implanted in feline posterior biceps femoris
-
Cameron T., et al. Effects of regional stimulation using a miniature stimulator implanted in feline posterior biceps femoris. IEEE Trans. Biomed. Eng. 1998, 45:1036-1043.
-
(1998)
IEEE Trans. Biomed. Eng.
, vol.45
, pp. 1036-1043
-
-
Cameron, T.1
-
25
-
-
78650935611
-
BION microstimulators: a case study in the engineering of an electronic implantable medical device
-
Kane M.J., et al. BION microstimulators: a case study in the engineering of an electronic implantable medical device. Med. Eng. Phys. 2011, 33:7-16.
-
(2011)
Med. Eng. Phys.
, vol.33
, pp. 7-16
-
-
Kane, M.J.1
-
26
-
-
84962080158
-
A preliminary clinical study using RF BION1 microstimulators to facilitate upper limb function in hemiplegia
-
Burridge J.H., et al. A preliminary clinical study using RF BION1 microstimulators to facilitate upper limb function in hemiplegia. Adv. Clin. Neurosci. Rehabil. 2004, 4:26-27.
-
(2004)
Adv. Clin. Neurosci. Rehabil.
, vol.4
, pp. 26-27
-
-
Burridge, J.H.1
-
27
-
-
33745067524
-
The BION devices: injectable interfaces with peripheral nerves and muscles
-
Loeb G.E., et al. The BION devices: injectable interfaces with peripheral nerves and muscles. Neurosurg. Focus 2006, 15:E2.
-
(2006)
Neurosurg. Focus
, vol.15
, pp. E2
-
-
Loeb, G.E.1
-
28
-
-
1542377573
-
First clinical experience with BION implants for therapeutic electrical stimulation
-
Dupont A.C., et al. First clinical experience with BION implants for therapeutic electrical stimulation. Neuromodulation 2004, 7:38-47.
-
(2004)
Neuromodulation
, vol.7
, pp. 38-47
-
-
Dupont, A.C.1
-
29
-
-
70049101828
-
Preliminary experience with implanted microstimulators for management of post-stroke impairments
-
Baker L.L., et al. Preliminary experience with implanted microstimulators for management of post-stroke impairments. J. Neurol. Phys. Ther. 2006, 30:209-222.
-
(2006)
J. Neurol. Phys. Ther.
, vol.30
, pp. 209-222
-
-
Baker, L.L.1
-
30
-
-
53449102588
-
Treatment of hemicrania continua by occipitalnerve stimulation with a bion device: long-term follow-up of a crossover study
-
Burns B., et al. Treatment of hemicrania continua by occipitalnerve stimulation with a bion device: long-term follow-up of a crossover study. Lancet Neurol. 2008, 7:1001-1012.
-
(2008)
Lancet Neurol.
, vol.7
, pp. 1001-1012
-
-
Burns, B.1
-
31
-
-
22544461073
-
BIONic WalkAide for correcting foot drop
-
Weber D.J., et al. BIONic WalkAide for correcting foot drop. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13:242-246.
-
(2005)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.13
, pp. 242-246
-
-
Weber, D.J.1
-
32
-
-
19944429981
-
Functional electrical stimulation using microstimulators to correct foot drop: a case study
-
Weber D.J., et al. Functional electrical stimulation using microstimulators to correct foot drop: a case study. Can. J. Physiol. Pharmacol. 2004, 82:784-792.
-
(2004)
Can. J. Physiol. Pharmacol.
, vol.82
, pp. 784-792
-
-
Weber, D.J.1
-
33
-
-
18144395793
-
Chronic pudendal nerve neuromodulation in women with idiopathic refractory detrusor overactivity incontinence: results of a pilot study with a novel minimally invasive implantable mini-stimulator
-
Groen J., et al. Chronic pudendal nerve neuromodulation in women with idiopathic refractory detrusor overactivity incontinence: results of a pilot study with a novel minimally invasive implantable mini-stimulator. Neurourol. Urodyn. 2005, 24:226-230.
-
(2005)
Neurourol. Urodyn.
, vol.24
, pp. 226-230
-
-
Groen, J.1
-
34
-
-
0033302212
-
Injectable electronic identification, monitoring, and stimulation systems
-
Troyk P.R. Injectable electronic identification, monitoring, and stimulation systems. Annu. Rev. Biomed. Eng. 1999, 1:177-209.
-
(1999)
Annu. Rev. Biomed. Eng.
, vol.1
, pp. 177-209
-
-
Troyk, P.R.1
-
35
-
-
70249111128
-
An implantable 64-channel wireless microsystem for single-unit neural recording
-
Wise K.D., et al. An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J. Solid State Circ. 2009, 44:2591-2604.
-
(2009)
IEEE J. Solid State Circ.
, vol.44
, pp. 2591-2604
-
-
Wise, K.D.1
-
36
-
-
84870799631
-
A microwave powered injectable neural stimulator
-
EMBS
-
Towe B.C., et al. A microwave powered injectable neural stimulator. Annual International Conference of the IEEE 2012, 5006-5009. EMBS.
-
(2012)
Annual International Conference of the IEEE
, pp. 5006-5009
-
-
Towe, B.C.1
-
37
-
-
84887996527
-
Creating the feedback loop: closed-loop neurostimulation
-
Hebb A.O., et al. Creating the feedback loop: closed-loop neurostimulation. Neurosurg. Clin. North Am. 2014, 25:187-204.
-
(2014)
Neurosurg. Clin. North Am.
, vol.25
, pp. 187-204
-
-
Hebb, A.O.1
-
38
-
-
79955864982
-
Feasibility of neural stimulation with floating-light-activated microelectrical stimulators
-
Abodo A., Sahin M. Feasibility of neural stimulation with floating-light-activated microelectrical stimulators. IEEE Trans. Biomed. Circ. Syst. 2011, 5:179-188.
-
(2011)
IEEE Trans. Biomed. Circ. Syst.
, vol.5
, pp. 179-188
-
-
Abodo, A.1
Sahin, M.2
-
39
-
-
77949487799
-
Ultrasonic transcutaneous energy transfer for powering implanted devices
-
Ozeri S., Shmilovitz D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 2010, 50:556-566.
-
(2010)
Ultrasonics
, vol.50
, pp. 556-566
-
-
Ozeri, S.1
Shmilovitz, D.2
-
40
-
-
0035283631
-
Nantotechniques and approaches in biotechnology
-
Adam C., Chris W. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001, 19:97-101.
-
(2001)
Trends Biotechnol.
, vol.19
, pp. 97-101
-
-
Adam, C.1
Chris, W.2
-
41
-
-
84858259155
-
3D nanoporous nanowire current collectors for thin film microbatteries
-
Xiaobo Z., et al. 3D nanoporous nanowire current collectors for thin film microbatteries. ACS Nano Lett. 2012, 12:1198-1202.
-
(2012)
ACS Nano Lett.
, vol.12
, pp. 1198-1202
-
-
Xiaobo, Z.1
-
42
-
-
84883488833
-
3D Printing of interdigitated Li-Ion microbattery architectures
-
Sun K., et al. 3D Printing of interdigitated Li-Ion microbattery architectures. Adv. Mater. 2013, 25:4539-4543.
-
(2013)
Adv. Mater.
, vol.25
, pp. 4539-4543
-
-
Sun, K.1
-
43
-
-
84906090245
-
Micro-battery development for juvenile salmon acoustic telemetry system applications
-
Chen H., et al. Micro-battery development for juvenile salmon acoustic telemetry system applications. Sci. Rep. 2014, 4:3790.
-
(2014)
Sci. Rep.
, vol.4
, pp. 3790
-
-
Chen, H.1
-
44
-
-
79960040455
-
Wireless microstimulators for neural prosthetics
-
Sahin M., et al. Wireless microstimulators for neural prosthetics. Crit. Rev. Biomed. Eng. 2011, 39:63-77.
-
(2011)
Crit. Rev. Biomed. Eng.
, vol.39
, pp. 63-77
-
-
Sahin, M.1
-
45
-
-
0024017416
-
RF powering of millimeter-and submillimeter-sized neural prosthetic implants
-
Heetderks W.J. RF powering of millimeter-and submillimeter-sized neural prosthetic implants. IEEE Trans. Biomed. Eng. 1988, 35:323-327.
-
(1988)
IEEE Trans. Biomed. Eng.
, vol.35
, pp. 323-327
-
-
Heetderks, W.J.1
-
47
-
-
84898602197
-
Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters
-
Stoopman M., et al. Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE J. Solid State Circ. 2014, 49:622-634.
-
(2014)
IEEE J. Solid State Circ.
, vol.49
, pp. 622-634
-
-
Stoopman, M.1
-
48
-
-
77952004836
-
Optimal frequency for wireless power transmission into dispersive tissue
-
Poon A.S.Y., et al. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 2010, 58:1739-1750.
-
(2010)
IEEE Trans. Antennas Propag.
, vol.58
, pp. 1739-1750
-
-
Poon, A.S.Y.1
-
49
-
-
80053219031
-
Floating light-activated microelectrical stimulators tested in the rat spinal cord
-
Abdo A., et al. Floating light-activated microelectrical stimulators tested in the rat spinal cord. J. Neural Eng. 2011, 8:056012.
-
(2011)
J. Neural Eng.
, vol.8
, pp. 056012
-
-
Abdo, A.1
-
50
-
-
84892597408
-
Near-infrared light penetration profile in the rodent brain
-
Abdo A., et al. Near-infrared light penetration profile in the rodent brain. J. Biomed. Opt. 2013, 18:075001.
-
(2013)
J. Biomed. Opt.
, vol.18
, pp. 075001
-
-
Abdo, A.1
-
51
-
-
70349671461
-
Silicon electronics on silk as a path to bioresorbable, implantable devices
-
Kim D., et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 2009, 95:133701.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 133701
-
-
Kim, D.1
-
52
-
-
84923337917
-
Electronic dura mater for long-term multimodal neural interfaces
-
Ivan R.M., et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347:159-163.
-
(2015)
Science
, vol.347
, pp. 159-163
-
-
Ivan, R.M.1
-
53
-
-
1842484779
-
Designing materials for biology and medicine
-
Langer R., et al. Designing materials for biology and medicine. Nature 2004, 428:487-492.
-
(2004)
Nature
, vol.428
, pp. 487-492
-
-
Langer, R.1
-
54
-
-
0037039862
-
Third-generation biomedical materials
-
Hench L.L., Polak J.M. Third-generation biomedical materials. Science 2002, 295:1014-1017.
-
(2002)
Science
, vol.295
, pp. 1014-1017
-
-
Hench, L.L.1
Polak, J.M.2
-
55
-
-
4444330267
-
Biomaterials: where we have been and where we are going
-
Ratner B.D., et al. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 2004, 6:41-75.
-
(2004)
Annu. Rev. Biomed. Eng.
, vol.6
, pp. 41-75
-
-
Ratner, B.D.1
-
56
-
-
78649274147
-
A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response
-
Onuki Y. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2008, 2:1003-1015.
-
(2008)
J. Diabetes Sci. Technol.
, vol.2
, pp. 1003-1015
-
-
Onuki, Y.1
-
57
-
-
0036693687
-
Electronic security systems and active implantable medical devices
-
Irnich W. Electronic security systems and active implantable medical devices. Pacing Clin. Electrophysiol. 2002, 25:1235-1258.
-
(2002)
Pacing Clin. Electrophysiol.
, vol.25
, pp. 1235-1258
-
-
Irnich, W.1
-
58
-
-
27744457946
-
Design and fabrication of neurostimulator implants-selected problems
-
Zaraska W., et al. Design and fabrication of neurostimulator implants-selected problems. Microelectron. Reliab. 2005, 45:1930-1934.
-
(2005)
Microelectron. Reliab.
, vol.45
, pp. 1930-1934
-
-
Zaraska, W.1
-
59
-
-
84876310253
-
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
-
Kim T., et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340:211-216.
-
(2013)
Science
, vol.340
, pp. 211-216
-
-
Kim, T.1
-
60
-
-
84890202150
-
Injectable 3-D fabrication of medical electronics at the target biological tissues
-
Jin C., et al. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci. Rep. 2013, 3:3442.
-
(2013)
Sci. Rep.
, vol.3
, pp. 3442
-
-
Jin, C.1
-
61
-
-
84907485592
-
Colloidal nanoparticles as advanced biological sensors
-
Howes P.D., et al. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346:1247390.
-
(2014)
Science
, vol.346
, pp. 1247390
-
-
Howes, P.D.1
-
62
-
-
79952398729
-
Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers
-
Yibo L., et al. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers. Nat. Biotechnol. 2010, 29:273-277.
-
(2010)
Nat. Biotechnol.
, vol.29
, pp. 273-277
-
-
Yibo, L.1
-
63
-
-
60349111587
-
Mammalian cell-based biosensors for pathogens and toxins
-
Pratik B., Arun K.B. Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol. 2009, 27:179-188.
-
(2009)
Trends Biotechnol.
, vol.27
, pp. 179-188
-
-
Pratik, B.1
Arun, K.B.2
-
64
-
-
84874993588
-
Implantable electrical devices
-
Pelter M.M., et al. Implantable electrical devices. Am. J. Crit. Care 2013, 22:163-164.
-
(2013)
Am. J. Crit. Care
, vol.22
, pp. 163-164
-
-
Pelter, M.M.1
-
65
-
-
84907210905
-
Biomimetics and evolution
-
Patek S.N. Biomimetics and evolution. Science 2014, 345:1448-1449.
-
(2014)
Science
, vol.345
, pp. 1448-1449
-
-
Patek, S.N.1
-
66
-
-
79551642724
-
Biomolecular imaging and electronic damage using X-ray free-electron lasers
-
Quiney H.M., et al. Biomolecular imaging and electronic damage using X-ray free-electron lasers. Nat. Phys. 2011, 7:142-146.
-
(2011)
Nat. Phys.
, vol.7
, pp. 142-146
-
-
Quiney, H.M.1
-
67
-
-
84882912908
-
Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases
-
Santiago J. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 2013, 341:889-892.
-
(2013)
Science
, vol.341
, pp. 889-892
-
-
Santiago, J.1
-
68
-
-
0034644207
-
Transcranial magnetic stimulation and the human brain
-
Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000, 406:147-150.
-
(2000)
Nature
, vol.406
, pp. 147-150
-
-
Hallett, M.1
-
69
-
-
84885150456
-
Principles of electrical stimulation of neural tissue
-
Brocker D.T., et al. Principles of electrical stimulation of neural tissue. Handb. Clin. Neurol. 2013, 116:3-18.
-
(2013)
Handb. Clin. Neurol.
, vol.116
, pp. 3-18
-
-
Brocker, D.T.1
-
70
-
-
84863036116
-
2+ acts as a mediator of communication from neurons to glia
-
2+ acts as a mediator of communication from neurons to glia. Sci. Signal. 2012, 5:ra8.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra8
-
-
Torres, A.1
-
71
-
-
84875146133
-
Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system
-
Wei M., et al. Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat. Protoc. 2013, 8:439-450.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 439-450
-
-
Wei, M.1
-
72
-
-
84899492875
-
Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex
-
Tomassy G.S., et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 2014, 344:319-324.
-
(2014)
Science
, vol.344
, pp. 319-324
-
-
Tomassy, G.S.1
-
74
-
-
0003631524
-
-
Sinauer Associates, D. Purves (Ed.)
-
Neuroscience 2001, Sinauer Associates. 2nd edn. D. Purves (Ed.).
-
(2001)
Neuroscience
-
-
-
75
-
-
84930932349
-
Nerve and Muscle Excitation
-
Sinauer Associates
-
Douglas J. 1992, Sinauer Associates. 3rd edn.
-
(1992)
-
-
Douglas, J.1
-
76
-
-
79960816393
-
Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans
-
93ra67
-
Hillel A.T., et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 2011, 3:93ra67.
-
(2011)
Sci. Transl. Med.
, vol.3
-
-
Hillel, A.T.1
|