메뉴 건너뛰기




Volumn 84, Issue 1, 2016, Pages 128-154

A Review of Modern Computational Algorithms for Bayesian Optimal Design

Author keywords

Bayesian optimal design; Decision theory; Posterior distribution approximation; Stochastic optimisation; Utility function

Indexed keywords


EID: 84930907631     PISSN: 03067734     EISSN: 17515823     Source Type: Journal    
DOI: 10.1111/insr.12107     Document Type: Article
Times cited : (312)

References (113)
  • 1
    • 33745673435 scopus 로고    scopus 로고
    • Bayesian-optimal design via interacting particle systems
    • Amzal B., Bois F., Parent E. & Robert C.P. (2006). Bayesian-optimal design via interacting particle systems. J. Amer. Statist. Assoc., 101(474), 773-785.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , Issue.474 , pp. 773-785
    • Amzal, B.1    Bois, F.2    Parent, E.3    Robert, C.4
  • 2
    • 0001891909 scopus 로고    scopus 로고
    • The usefulness of optimum experimental designs
    • Atkinson A.C. (1996). The usefulness of optimum experimental designs. J. R. Stat. Soc. Ser. B., 58, 59-76.
    • (1996) J. R. Stat. Soc. Ser. B. , vol.58 , pp. 59-76
    • Atkinson, A.1
  • 3
    • 34548841098 scopus 로고    scopus 로고
    • DT-optimum designs for model discrimination and parameter estimation
    • Atkinson A.C. (2008). DT-optimum designs for model discrimination and parameter estimation. J. Statist. Plann. Inference, 138, 56-64.
    • (2008) J. Statist. Plann. Inference , vol.138 , pp. 56-64
    • Atkinson, A.1
  • 5
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont M.A., Zhang W., Balding D.J. (2002). Approximate Bayesian computation in population genetics. Genet., 162(4), 2025-2035.
    • (2002) Genet. , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.1    Zhang, W.2    Balding, D.3
  • 6
    • 57949085983 scopus 로고    scopus 로고
    • Curse-of-dimensionality 2008. revisited: Collapse of the particle filter in very large scale systems
    • Probability and Statistics: Essays in Honor of David a. Freedman, Beechwood, Ohio, USA: Institute of Mathematical Statistics.
    • Bengtsson T., Bickel P. & Li B. (2008). Curse-of-dimensionality 2008. revisited: Collapse of the particle filter in very large scale systems. Probability and Statistics: Essays in Honor of David a. Freedman, Vol. 2. pp. 316-334. Beechwood, Ohio, USA: Institute of Mathematical Statistics.
    • (2008) , vol.2 , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 8
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • Bernardo J.M. (1979). Expected information as expected utility. Ann. Statist., 7(3), 686-690.
    • (1979) Ann. Statist. , vol.7 , Issue.3 , pp. 686-690
    • Bernardo, J.1
  • 9
    • 84981748011 scopus 로고    scopus 로고
    • 2ndedn. John Wiley & Sons 2000, Nocedal and Wright 2006, Ross 1983 and Sisson and Fan 2011. Chichester, New York:.
    • Bernardo J.M., Smith A.F.M. (2000). Bayesian Theory 2ndedn. John Wiley & Sons 2000, Nocedal and Wright 2006, Ross 1983 and Sisson and Fan 2011. Chichester, New York:.
    • (2000) Bayesian Theory
    • Bernardo, J.1    Smith, A.2
  • 11
    • 0023914909 scopus 로고
    • One-sided sequential stopping boundaries for clinical trials: A decision-theoretic approach
    • Berry D.A., Ho C.-H. (1988). One-sided sequential stopping boundaries for clinical trials: A decision-theoretic approach. Biometrics, 44, 219-227.
    • (1988) Biometrics , vol.44 , pp. 219-227
    • Berry, D.1    Ho, C.-H.2
  • 12
    • 0345534823 scopus 로고    scopus 로고
    • Decision analysis by augmented probability simulation
    • Bielza C., Müller P., Insua D.R. (1999). Decision analysis by augmented probability simulation. Manag. Sci., 45(7), 995-1007.
    • (1999) Manag. Sci. , vol.45 , Issue.7 , pp. 995-1007
    • Bielza, C.1    Müller, P.2    Insua, D.3
  • 13
    • 84856756859 scopus 로고    scopus 로고
    • Response-adaptive dose-finding under model uncertainty
    • Bornkamp B., Bretz F., Dette H., Pinheiro J. (2011). Response-adaptive dose-finding under model uncertainty. Ann. Appl. Stat., 5(2B), 1611-1631.
    • (2011) Ann. Appl. Stat. , vol.5 , Issue.2 B , pp. 1611-1631
    • Bornkamp, B.1    Bretz, F.2    Dette, H.3    Pinheiro, J.4
  • 14
    • 0002937220 scopus 로고
    • A total entropy criterion for the dual problem of model discrimination and parameter estimation
    • Borth D.M. (1975). A total entropy criterion for the dual problem of model discrimination and parameter estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol., 37, 77-87.
    • (1975) J. R. Stat. Soc. Ser. B. Stat. Methodol. , vol.37 , pp. 77-87
    • Borth, D.1
  • 15
    • 0002928751 scopus 로고
    • Discrimination among mechanistic models
    • Box G.E.P., Hill W.J. (1967). Discrimination among mechanistic models. Technometrics, 9, 57-71.
    • (1967) Technometrics , vol.9 , pp. 57-71
    • Box, G.1    Hill, W.2
  • 16
    • 0141907309 scopus 로고    scopus 로고
    • A gridding method for Bayesian sequential decision problems
    • Brockwell A.E., Kadane J.B. (2003). A gridding method for Bayesian sequential decision problems. J. Comput. Graph. Statist., 12(3), 566-584.
    • (2003) J. Comput. Graph. Statist. , vol.12 , Issue.3 , pp. 566-584
    • Brockwell, A.1    Kadane, J.2
  • 17
    • 0031683608 scopus 로고    scopus 로고
    • Approaches for optimal sequential decision analysis in clinical trials
    • Carlin B., Kadane J., Gelfand A. (1998). Approaches for optimal sequential decision analysis in clinical trials. Biometrics, 54(3), 964-975.
    • (1998) Biometrics , vol.54 , Issue.3 , pp. 964-975
    • Carlin, B.1    Kadane, J.2    Gelfand, A.3
  • 18
    • 77953334192 scopus 로고    scopus 로고
    • Adaptive design optimization: A mutual information-based approach to model discrimination in cognitive science
    • Cavagnaro D.R., Myung J.I., Pitt M.A., Kujala J.V. (2010). Adaptive design optimization: A mutual information-based approach to model discrimination in cognitive science. Neural Comput., 22(4), 887-905.
    • (2010) Neural Comput. , vol.22 , Issue.4 , pp. 887-905
    • Cavagnaro, D.1    Myung, J.2    Pitt, M.3    Kujala, J.4
  • 19
    • 0000529193 scopus 로고
    • Optimal Bayesian experimental designs for linear models
    • Chaloner K. (1984). Optimal Bayesian experimental designs for linear models. Ann. Statist., 12, 283-300.
    • (1984) Ann. Statist. , vol.12 , pp. 283-300
    • Chaloner, K.1
  • 20
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • Chaloner K., Verdinelli I. (1995). Bayesian experimental design: A review. Stat. Sci., 10, 273-304.
    • (1995) Stat. Sci. , vol.10 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 21
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin N. (2002). A sequential particle filter method for static models. Biometrika, 89(3), 539-552.
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 539-552
    • Chopin, N.1
  • 22
    • 13244252368 scopus 로고    scopus 로고
    • Bayesian randomized clinical trials: A decision-theoretic sequential design
    • Christen J., Müller P., Wathen K., Wolf J. (2004). Bayesian randomized clinical trials: A decision-theoretic sequential design. Canad. J. Statist., 32(4), 387-402.
    • (2004) Canad. J. Statist. , vol.32 , Issue.4 , pp. 387-402
    • Christen, J.1    Müller, P.2    Wathen, K.3    Wolf, J.4
  • 23
    • 0000312195 scopus 로고    scopus 로고
    • Experimental design: A Bayesian perspective
    • Clyde M. (2001). Experimental design: A Bayesian perspective. IESBS, 8, 5075-5081.
    • (2001) IESBS , vol.8 , pp. 5075-5081
    • Clyde, M.1
  • 24
    • 0030337323 scopus 로고    scopus 로고
    • The equivalence of constrained and weighted designs in multiple objective design problems
    • Clyde M., Chaloner K. (1996). The equivalence of constrained and weighted designs in multiple objective design problems. J. Amer. Statist. Assoc., 91, 1236-1244.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1236-1244
    • Clyde, M.1    Chaloner, K.2
  • 25
    • 0344318661 scopus 로고    scopus 로고
    • Exploring 1996, DasGupta 1995, Kim 2013, Kuck 2006, McGree 2012a and McGree 2014. expected utility surfaces by Markov chains
    • Technical Report. Durham, North Carolina:, Duke University.
    • Clyde M.A., Müller P. & Parmigiani G. (1996). Exploring 1996, DasGupta 1995, Kim et al. 2013, Kuck et al. 2006, McGree et al. 2012a and McGree et al. 2014. expected utility surfaces by Markov chains. Technical Report. Durham, North Carolina:, Duke University.
    • (1996)
    • Clyde, M.1    Müller, P.2    Parmigiani, G.3
  • 26
    • 49749128367 scopus 로고    scopus 로고
    • Optimal observation times in experimental epidemic processes
    • Cook A., Gibson G., Gilligan C. (2008). Optimal observation times in experimental epidemic processes. Biometrics, 64(3), 860-868.
    • (2008) Biometrics , vol.64 , Issue.3 , pp. 860-868
    • Cook, A.1    Gibson, G.2    Gilligan, C.3
  • 27
    • 0025061674 scopus 로고
    • Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments
    • D'Argenio D. (1990). Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci., 99(1), 105-118.
    • (1990) Math. Biosci. , vol.99 , Issue.1 , pp. 105-118
    • D'Argenio, D.1
  • 28
    • 0347208858 scopus 로고
    • Review of optimal Bayes designs
    • Technical Report. West Lafayette, Indiana:, Purdue University.
    • DasGupta A. (1995). Review of optimal Bayes designs. Technical Report. West Lafayette, Indiana:, Purdue University.
    • (1995)
    • DasGupta, A.1
  • 32
    • 0001125645 scopus 로고
    • A generalization of D-and D1-optimal designs in polynomial regression
    • Dette H. (1990). A generalization of D-and D1-optimal designs in polynomial regression. The Ann. Statist., 18, 1784-1804.
    • (1990) The Ann. Statist. , vol.18 , pp. 1784-1804
    • Dette, H.1
  • 33
    • 33645062953 scopus 로고    scopus 로고
    • Bayesian geostatistical design
    • Diggle P., Lophaven S. (2006). Bayesian geostatistical design. Scand. J. Stat., 33(1), 53-64.
    • (2006) Scand. J. Stat. , vol.33 , Issue.1 , pp. 53-64
    • Diggle, P.1    Lophaven, S.2
  • 34
    • 84901750751 scopus 로고    scopus 로고
    • A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design
    • Drovandi C., McGree J., Pettitt A. (2014). A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design. J. Comput. Graph. Statist., 23(1), 3-24.
    • (2014) J. Comput. Graph. Statist. , vol.23 , Issue.1 , pp. 3-24
    • Drovandi, C.1    McGree, J.2    Pettitt, A.3
  • 35
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
    • Drovandi C.C., Pettitt A.N. (2011). Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics, 67(1), 225-233.
    • (2011) Biometrics , vol.67 , Issue.1 , pp. 225-233
    • Drovandi, C.1    Pettitt, A.2
  • 36
    • 84890309642 scopus 로고    scopus 로고
    • Bayesian experimental design for models with intractable likelihoods
    • Drovandi C.C., Pettitt A.N. (2013). Bayesian experimental design for models with intractable likelihoods. Biometrics, 69(4), 937-948.
    • (2013) Biometrics , vol.69 , Issue.4 , pp. 937-948
    • Drovandi, C.1    Pettitt, A.2
  • 37
  • 38
    • 84865429735 scopus 로고    scopus 로고
    • Sequential Monte Carlo for Bayesian sequential design
    • Drovandi C.C., McGree J.M., Pettitt A.N. (2014). Sequential Monte Carlo for Bayesian sequential design. Comput. Stat. Data Anal., 57(1), 320-335.
    • (2014) Comput. Stat. Data Anal. , vol.57 , Issue.1 , pp. 320-335
    • Drovandi, C.1    McGree, J.2    Pettitt, A.3
  • 39
    • 0040183409 scopus 로고
    • Bayesian optimal designs for linear regression models
    • El-Krunz S., Studden W. (1991). Bayesian optimal designs for linear regression models. Ann. Statist., 19, 2183-2208.
    • (1991) Ann. Statist. , vol.19 , pp. 2183-2208
    • El-Krunz, S.1    Studden, W.2
  • 42
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econom., 57(6), 1317-1339.
    • (1989) Econom. , vol.57 , Issue.6 , pp. 1317-1339
    • Geweke, J.1
  • 43
    • 84905697246 scopus 로고    scopus 로고
    • Likelihood-free simulation-based optimal design
    • Technical Report, Johannes Kepler University, Linz.
    • Hainy M., Müller W., Wagner H. (2013). Likelihood-free simulation-based optimal design. Technical Report, Johannes Kepler University, Linz.
    • (2013)
    • Hainy, M.1    Müller, W.2    Wagner, H.3
  • 44
    • 1642285007 scopus 로고    scopus 로고
    • Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics
    • Han C., Chaloner K. (2004). Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics. Biometrics, 60, 25-33.
    • (2004) Biometrics , vol.60 , pp. 25-33
    • Han, C.1    Chaloner, K.2
  • 45
    • 0001147975 scopus 로고
    • A joint design criterion for the dual problem of model discrimination and parameter estimation
    • Hill W., Hunter W., Wichern D. (1968). A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics, 10(1), 145-160.
    • (1968) Technometrics , vol.10 , Issue.1 , pp. 145-160
    • Hill, W.1    Hunter, W.2    Wichern, D.3
  • 46
    • 0003059560 scopus 로고
    • A review of experimental design procedures for regression model discrimination
    • Hill W.J. (1978). A review of experimental design procedures for regression model discrimination. Technometerics, 20, 15-21.
    • (1978) Technometerics , vol.20 , pp. 15-21
    • Hill, W.1
  • 47
    • 0020802518 scopus 로고
    • Perturbation analysis and optimization of queueing networks
    • Ho Y.C., Cao X. (1983). Perturbation analysis and optimization of queueing networks. J. Optim. Theory Appl., 40, 559-582.
    • (1983) J. Optim. Theory Appl. , vol.40 , pp. 559-582
    • Ho, Y.1    Cao, X.2
  • 48
    • 84868496909 scopus 로고    scopus 로고
    • Simulation-based optimal Bayesian experimental design for nonlinear systems
    • Huan X., Marzouk Y.M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232(1), 288-317.
    • (2013) J. Comput. Phys. , vol.232 , Issue.1 , pp. 288-317
    • Huan, X.1    Marzouk, Y.2
  • 49
    • 84947055684 scopus 로고    scopus 로고
    • Gradient-based stochastic optimization methods in Bayesian experimental design
    • Huan X., Marzouk Y.M. (2014). Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertain. Quantif., 4(6), 479-510.
    • (2014) Int. J. Uncertain. Quantif. , vol.4 , Issue.6 , pp. 479-510
    • Huan, X.1    Marzouk, Y.2
  • 50
    • 84962817680 scopus 로고    scopus 로고
    • A hierarchical adaptive approach to optimal experimental design
    • Technical Report. Columbus, Ohio: Ohio State University.
    • Kim W., Pitt M.A., Lu Z.-L., Steyvers M., Myung J.I. (2013). A hierarchical adaptive approach to optimal experimental design. Technical Report. Columbus, Ohio: Ohio State University.
    • (2013)
    • Kim, W.1    Pitt, M.2    Lu, Z.-L.3    Steyvers, M.4    Myung, J.5
  • 51
    • 0029730671 scopus 로고    scopus 로고
    • Bayesian fishery stock assessment and decision making using adaptive importance sampling
    • Kinas P. (1996). Bayesian fishery stock assessment and decision making using adaptive importance sampling. Can. J. Fish. Aquat.Sci., 53, 414-423.
    • (1996) Can. J. Fish. Aquat.Sci. , vol.53 , pp. 414-423
    • Kinas, P.1
  • 52
    • 85089792556 scopus 로고    scopus 로고
    • SMC samplers for Bayesian optimal nonlinear design
    • Technical Report. Vancouver: University of British Columbia.
    • Kück H., deFreitas N., Doucet A. (2006). SMC samplers for Bayesian optimal nonlinear design. Technical Report. Vancouver: University of British Columbia.
    • (2006)
    • Kück, H.1    deFreitas, N.2    Doucet, A.3
  • 53
    • 33646861010 scopus 로고    scopus 로고
    • Bayesian adaptive estimation: The next dimension
    • Kujala J.V., Lukka T.J. (2006). Bayesian adaptive estimation: The next dimension. J. Math. Psych., 50(4), 369-389.
    • (2006) J. Math. Psych. , vol.50 , Issue.4 , pp. 369-389
    • Kujala, J.1    Lukka, T.2
  • 54
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., Leibler R.A. (1951). On information and sufficiency. Ann. Math. Stat., 22(1), 79-86.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 56
    • 63249126388 scopus 로고    scopus 로고
    • Sequential optimal design of neurophysiology experiments
    • Lewi J., Butera R., Paninski L. (2009). Sequential optimal design of neurophysiology experiments. Neural Comput., 21, 619-687.
    • (2009) Neural Comput. , vol.21 , pp. 619-687
    • Lewi, J.1    Butera, R.2    Paninski, L.3
  • 57
    • 13044274375 scopus 로고
    • Group sequential clinical trials: A classical evaluation of Bayesian decision-theoretic designs
    • Lewis R., Berry D.A. (1994). Group sequential clinical trials: A classical evaluation of Bayesian decision-theoretic designs. J. Amer. Statist. Assoc., 89, 1528-1534.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1528-1534
    • Lewis, R.1    Berry, D.2
  • 58
    • 84873505176 scopus 로고    scopus 로고
    • Maximising 2013 is not a one-page article please supply the first and last pages for this article. the information content of experiments in systems biology
    • Online ahead of print at DOI
    • Liepe J., Filippi S., Komorowski M., Stumpf M.P.H. (2013). Maximising 2013 is not a one-page article please supply the first and last pages for this article. the information content of experiments in systems biology. PLoS Comput. Biol., 1, e1002888. Online ahead of print at DOI doi:10.1371/journal.pcbi.1002888.
    • (2013) PLoS Comput. Biol. , vol.1 , pp. e1002888
    • Liepe, J.1    Filippi, S.2    Komorowski, M.3    Stumpf, M.4
  • 59
    • 0001249987 scopus 로고
    • On a measure of the information provided by an experiment
    • Lindley D. (1956). On a measure of the information provided by an experiment. Ann. Math. Stat., 27, 986-1005.
    • (1956) Ann. Math. Stat. , vol.27 , pp. 986-1005
    • Lindley, D.1
  • 60
    • 0002438052 scopus 로고
    • The choice of variables in multiple regression
    • Lindley D. (1968). The choice of variables in multiple regression. J. R. Stat. Soc. Ser. B., 30, 31-53.
    • (1968) J. R. Stat. Soc. Ser. B. , vol.30 , pp. 31-53
    • Lindley, D.1
  • 62
    • 66349102328 scopus 로고    scopus 로고
    • Sequential designs for ordinal phase I clinical trials
    • Liu G., Rosenberger W.F., Haines L.M. (2009). Sequential designs for ordinal phase I clinical trials. Biom. J., 51(2), 335-347.
    • (2009) Biom. J. , vol.51 , Issue.2 , pp. 335-347
    • Liu, G.1    Rosenberger, W.2    Haines, L.3
  • 64
    • 84876305657 scopus 로고    scopus 로고
    • Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations
    • Long Q., Scavino M, Tempone R., Wang S. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Engrg., 259, 24-39.
    • (2013) Comput. Methods Appl. Mech. Engrg. , vol.259 , pp. 24-39
    • Long, Q.1    Scavino, M.2    Tempone, R.3    Wang, S.4
  • 65
    • 33646817544 scopus 로고    scopus 로고
    • Bayesian adaptive exploration. Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
    • Jackson Hole, Wyoming, USA.
    • Loredo T. (2004). Bayesian adaptive exploration. Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, pp. 330-346. Jackson Hole, Wyoming, USA.
    • (2004) , pp. 330-346
    • Loredo, T.1
  • 66
    • 16244370086 scopus 로고    scopus 로고
    • Global random optimization by simultaneous perturbation stochastic approximation
    • Maryak J., Chin D. (2004). Global random optimization by simultaneous perturbation stochastic approximation. Johns Hopkins APL Tech. Dig., 25(2), 91-100.
    • (2004) Johns Hopkins APL Tech. Dig. , vol.25 , Issue.2 , pp. 91-100
    • Maryak, J.1    Chin, D.2
  • 67
    • 84875955685 scopus 로고    scopus 로고
    • Sequential Markov chain Monte Carlo (MCMC) model discrimination
    • Masoumi S., Duever T.A., Reilly P.M. (2013). Sequential Markov chain Monte Carlo (MCMC) model discrimination. The Can. J. Chem. Eng., 91(5), 862-869.
    • (2013) The Can. J. Chem. Eng. , vol.91 , Issue.5 , pp. 862-869
    • Masoumi, S.1    Duever, T.2    Reilly, P.3
  • 68
    • 84962821916 scopus 로고    scopus 로고
    • A sequential Monte Carlo approach to the sequential design for discriminating between rival continuous data models
    • Technical Report. Brisbane, Queensland University of Technology.
    • McGree J., Drovandi C.C., Pettitt A.N. (2012a). A sequential Monte Carlo approach to the sequential design for discriminating between rival continuous data models. Technical Report. Brisbane, Queensland University of Technology.
    • (2012)
    • McGree, J.1    Drovandi, C.2    Pettitt, A.3
  • 70
    • 84962818356 scopus 로고    scopus 로고
    • A sequential Monte Carlo algorithm for random effects models in Bayesian sequential design
    • Technical Report. Brisbane, Queensland University of Technology.
    • McGree J., Drovandi C. & White G., Pettitt A. (2014). A sequential Monte Carlo algorithm for random effects models in Bayesian sequential design. Technical Report. Brisbane, Queensland University of Technology.
    • (2014)
    • McGree, J.1    Drovandi, C.2    White, G.3    Pettitt, A.4
  • 71
    • 0007190954 scopus 로고    scopus 로고
    • Simulation-based optimal design
    • Müller P. (1999). Simulation-based optimal design. Bayesian Stat., 6, 459-474.
    • (1999) Bayesian Stat. , vol.6 , pp. 459-474
    • Müller, P.1
  • 72
    • 21344450598 scopus 로고
    • Optimal design via curve fitting of Monte Carlo experiments
    • Müller P., Parmigiani G. (1995). Optimal design via curve fitting of Monte Carlo experiments. J. Amer. Statist. Assoc., 90(432), 1322-1330.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , Issue.432 , pp. 1322-1330
    • Müller, P.1    Parmigiani, G.2
  • 73
    • 4944254628 scopus 로고    scopus 로고
    • Optimal Bayesian design by inhomogeneous Markov chain simulation
    • Müller P., Sansó B., DeIorio M. (2004). Optimal Bayesian design by inhomogeneous Markov chain simulation. J. Amer. Statist. Assoc., 99(467), 788-798.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , Issue.467 , pp. 788-798
    • Müller, P.1    Sansó, B.2    DeIorio, M.3
  • 74
    • 77958491024 scopus 로고    scopus 로고
    • A Bayesian decision-theoretic dose-finding trial
    • Müller P., Berry D.A., Grieve A.P., Krams M. (2006). A Bayesian decision-theoretic dose-finding trial. Decis. Anal., 3(4), 197-207.
    • (2006) Decis. Anal. , vol.3 , Issue.4 , pp. 197-207
    • Müller, P.1    Berry, D.2    Grieve, A.3    Krams, M.4
  • 75
    • 84962866163 scopus 로고
    • A simplex method for function minimization
    • Nelder J.A., Mead R. (1965). A simplex method for function minimization. The Comput. J., 7(4), 308-313.
    • (1965) The Comput. J. , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.1    Mead, R.2
  • 76
    • 9744246868 scopus 로고    scopus 로고
    • Design of follow-up experiments for improving model discrimination and parameter estimation
    • Ng S.H., Chick S.E. (2004). Design of follow-up experiments for improving model discrimination and parameter estimation. Naval Res. Logist., 51, 1129-1148.
    • (2004) Naval Res. Logist. , vol.51 , pp. 1129-1148
    • Ng, S.1    Chick, S.2
  • 78
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • Ormerod J., Wand M. (2010). Explaining variational approximations. J. Amer. Statist. Assoc., 64(2), 140-153.
    • (2010) J. Amer. Statist. Assoc. , vol.64 , Issue.2 , pp. 140-153
    • Ormerod, J.1    Wand, M.2
  • 79
    • 0032581584 scopus 로고
    • Bayesian optimal design in population models for haematologic data
    • Palmer J., Müller P.(1988) Bayesian optimal design in population models for haematologic data. Stat. Med., 17, 1613-1622.
    • (1988) Stat. Med. , vol.17 , pp. 1613-1622
    • Palmer, J.1    Müller, P.2
  • 80
    • 18744390761 scopus 로고    scopus 로고
    • Asymptotic theory of information-theoretic experimental design
    • Paninski L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Comput., 17, 1480-1507.
    • (2005) Neural Comput. , vol.17 , pp. 1480-1507
    • Paninski, L.1
  • 81
    • 0003924735 scopus 로고    scopus 로고
    • An adaptive importance sampling technique
    • Eds. H. Niederreiter & D. Talay. Heidelberg: Springer Berlin.
    • Pennanen T., Koivu M. (2006). An adaptive importance sampling technique. In Monte Carlo and Quasi-Monte Carlo Methods 2004, Eds. H. Niederreiter & D. Talay, pp. 443-455. Heidelberg: Springer Berlin.
    • (2006) Monte Carlo and Quasi-Monte Carlo Methods 2004 , pp. 443-455
    • Pennanen, T.1    Koivu, M.2
  • 83
    • 0022093313 scopus 로고
    • Robust experimental design via stochastic approximation
    • Pronzato L., Walter E. (1985). Robust experimental design via stochastic approximation. Math. Biosci., 75, 103-120.
    • (1985) Math. Biosci. , vol.75 , pp. 103-120
    • Pronzato, L.1    Walter, E.2
  • 84
    • 0000981840 scopus 로고
    • Optimal weights for experimental designs on linearly independent support points
    • Pukelsheim F., Torsney B. (1991). Optimal weights for experimental designs on linearly independent support points. The Ann. Statist., 19(3), 1614-1625.
    • (1991) The Ann. Statist. , vol.19 , Issue.3 , pp. 1614-1625
    • Pukelsheim, F.1    Torsney, B.2
  • 86
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., Monro S. (1951). A stochastic approximation method. Ann. Math. Stat., 22(3), 400-407.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 88
    • 84871241556 scopus 로고    scopus 로고
    • Sequential stopping for high-throughput experiments
    • Rossell D., Müller P. (2013). Sequential stopping for high-throughput experiments. Biostat., 14(1), 75-86.
    • (2013) Biostat. , vol.14 , Issue.1 , pp. 75-86
    • Rossell, D.1    Müller, P.2
  • 89
    • 34648846772 scopus 로고    scopus 로고
    • Screening designs for drug development
    • Rossell D., Müller P., Rosner G.L. (2007). Screening designs for drug development. Biostat., 8(3), 595-608.
    • (2007) Biostat. , vol.8 , Issue.3 , pp. 595-608
    • Rossell, D.1    Müller, P.2    Rosner, G.3
  • 90
    • 0345728638 scopus 로고
    • Design of experiments for discrimination among rival models
    • Ph.D. Thesis, Princeton University, New Jersey, USA.
    • Roth P. (1965). Design of experiments for discrimination among rival models, Ph.D. Thesis, Princeton University, New Jersey, USA.
    • (1965)
    • Roth, P.1
  • 91
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion)
    • Rue H., Martino S., Chopin N. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B., 71(2), 319-392.
    • (2009) J. R. Stat. Soc. Ser. B. , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 92
    • 84888380540 scopus 로고    scopus 로고
    • Towards Bayesian experimental design for nonlinear models that require a large number of sampling times
    • Ryan E.G., Drovandi C.C., Thompson M., Pettitt A.N. (2014). Towards Bayesian experimental design for nonlinear models that require a large number of sampling times. Comput. Stat. Data Anal., 70, 45-60.
    • (2014) Comput. Stat. Data Anal. , vol.70 , pp. 45-60
    • Ryan, E.1    Drovandi, C.2    Thompson, M.3    Pettitt, A.4
  • 93
    • 84982699427 scopus 로고    scopus 로고
    • Fully Bayesian experimental design for pharmacokinetic studies
    • Ryan E.G., Drovandi C.C., Pettitt A.N. (2015a). Fully Bayesian experimental design for pharmacokinetic studies. Entropy, 17, 1063-1089.
    • (2015) Entropy , vol.17 , pp. 1063-1089
    • Ryan, E.1    Drovandi, C.2    Pettitt, A.3
  • 94
    • 84939537770 scopus 로고    scopus 로고
    • Simulation-based fully Bayesian experimental design for mixed effects models.
    • press
    • Ryan E.G., Drovandi C.C., Pettitt A.N. (2015b). Simulation-based fully Bayesian experimental design for mixed effects models. Comput. Stat. Data Anal. (In press).
    • (2015) Comput. Stat. Data Anal.
    • Ryan, E.1    Drovandi, C.2    Pettitt, A.3
  • 95
    • 0141941673 scopus 로고    scopus 로고
    • Estimating expected information gains for experimental designs with application to the random fatigue-limit model
    • Ryan K. (2003). Estimating expected information gains for experimental designs with application to the random fatigue-limit model. J. Comput. Graph. Statist., 12, 585-603.
    • (2003) J. Comput. Graph. Statist. , vol.12 , pp. 585-603
    • Ryan, K.1
  • 96
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon C. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423, 623-656.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1
  • 98
    • 84859815584 scopus 로고    scopus 로고
    • Simulation-based optimal design using a response variance criterion
    • Solonen A., Haario H., Laine M. (2012). Simulation-based optimal design using a response variance criterion. J. Comput. Graph. Statist., 21(1), 234-252.
    • (2012) J. Comput. Graph. Statist. , vol.21 , Issue.1 , pp. 234-252
    • Solonen, A.1    Haario, H.2    Laine, M.3
  • 99
    • 0000284219 scopus 로고    scopus 로고
    • An overview of the simultaneous perturbation method for efficient optimization
    • Spall J.C. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Tech. Dig., 19(4), 482-492.
    • (1998) Johns Hopkins APL Tech. Dig. , vol.19 , Issue.4 , pp. 482-492
    • Spall, J.1
  • 100
    • 0003761555 scopus 로고    scopus 로고
    • Bayesian approaches to randomize trials
    • D.A. Berry, D.K. Stangl 67-108. New York: Dekker.
    • Spiegelhalter D.J., Freedman L.S., Parmar M.K.B. (1996). Bayesian approaches to randomize trials. In Bayesian Biostatistics, D.A. Berry, D.K. Stangl, pp. 67-108. New York: Dekker.
    • (1996) Bayesian Biostatistics
    • Spiegelhalter, D.1    Freedman, L.2    Parmar, M.3
  • 101
    • 0035648372 scopus 로고    scopus 로고
    • Optimal sampling times in population pharmacokinetic studies
    • Stroud J., Müller P., Rosner G. (2001). Optimal sampling times in population pharmacokinetic studies. J. R. Stat. Soc. Ser. C. Appl. Stat., 50(3), 345-359.
    • (2001) J. R. Stat. Soc. Ser. C. Appl. Stat. , vol.50 , Issue.3 , pp. 345-359
    • Stroud, J.1    Müller, P.2    Rosner, G.3
  • 102
    • 74049137527 scopus 로고    scopus 로고
    • Sequential Bayesian design for estimation of EDp
    • Tianjin: The 2nd International Conference on Biomedical Engineering and Informatics, 2009. BMEI'09
    • Tian Y., Wang D. (2009). Sequential Bayesian design for estimation of EDp. Tianjin: The 2nd International Conference on Biomedical Engineering and Informatics, 2009. BMEI'09, pp. 883-885.
    • (2009) , pp. 883-885
    • Tian, Y.1    Wang, D.2
  • 103
    • 69249221278 scopus 로고    scopus 로고
    • Optimal designs for both model discrimination and parameter estimation
    • Tommasi C. (2009). Optimal designs for both model discrimination and parameter estimation. J. Statist. Plann. Inference, 139, 4123-4132.
    • (2009) J. Statist. Plann. Inference , vol.139 , pp. 4123-4132
    • Tommasi, C.1
  • 104
    • 70349270572 scopus 로고    scopus 로고
    • Bayesian optimum designs for discriminiating between models with any distribution
    • Tommasi C., López-Fidalgo J. (2010). Bayesian optimum designs for discriminiating between models with any distribution. Comput. Stat. Data Anal., 54, 143-150.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 143-150
    • Tommasi, C.1    López-Fidalgo, J.2
  • 106
    • 84896718163 scopus 로고    scopus 로고
    • Optimal experimental design for model selection in biochemical networks
    • Vanlier J., Tiemann C., Hilbers P., van Riel N. (2014). Optimal experimental design for model selection in biochemical networks. BMC Syst. Biol., 8, 20.
    • (2014) BMC Syst. Biol. , vol.8 , pp. 20
    • Vanlier, J.1    Tiemann, C.2    Hilbers, P.3    van Riel, N.4
  • 107
    • 0042668214 scopus 로고
    • Advances in Bayesian Experimental Design (with Discussion), Oxford: Oxford University Press.
    • Verdinelli I. (1992). Bayesian Statistics 4, 467-481, Advances in Bayesian Experimental Design (with Discussion), vol.4, Oxford: Oxford University Press.
    • (1992) Bayesian Statistics 4 , vol.4 , pp. 467-481
    • Verdinelli, I.1
  • 108
    • 0002979691 scopus 로고
    • An expected loss approach to the design of dosage regimens via sampling-based methods
    • Wakefield J. (1994). An expected loss approach to the design of dosage regimens via sampling-based methods. J. R. Stat. Soc. Ser. D (The Statistician), 43(1), 13-29.
    • (1994) J. R. Stat. Soc. Ser. D (The Statistician) , vol.43 , Issue.1 , pp. 13-29
    • Wakefield, J.1
  • 109
    • 60749092790 scopus 로고    scopus 로고
    • Optimal design criteria for discrimination and estimation in nonlinear models
    • Waterhouse T.H., Eccleston J.A., Duffull S.B. (2009). Optimal design criteria for discrimination and estimation in nonlinear models. J. Biopharm. Stat., 19, 386-402.
    • (2009) J. Biopharm. Stat. , vol.19 , pp. 386-402
    • Waterhouse, T.1    Eccleston, J.2    Duffull, S.3
  • 110
    • 0029071328 scopus 로고
    • Bayesian decision procedures for dose determining experiments
    • Whitehead J., Brunier H. (1995). Bayesian decision procedures for dose determining experiments. Stat. Med., 14, 885-893.
    • (1995) Stat. Med. , vol.14 , pp. 885-893
    • Whitehead, J.1    Brunier, H.2
  • 111
    • 0031670630 scopus 로고    scopus 로고
    • Bayesian decision procedures based on logisic regression models for dose-finding studies
    • Whitehead J., Williamson D. (1998). Bayesian decision procedures based on logisic regression models for dose-finding studies. J. Biopharm. Stat., 8, 445-467.
    • (1998) J. Biopharm. Stat. , vol.8 , pp. 445-467
    • Whitehead, J.1    Williamson, D.2
  • 112
    • 0009574196 scopus 로고    scopus 로고
    • Expected utility as a policy making tool: An environmental health example
    • Eds. D. Berry, D. Stangl, Dekker. New York.
    • Wolfson L., Kadane J., Small M. (1996). Expected utility as a policy making tool: An environmental health example. In Bayesian Biostatistics, Eds. D. Berry, D. Stangl, Dekker pp. 261-277. New York.
    • (1996) Bayesian Biostatistics , pp. 261-277
    • Wolfson, L.1    Kadane, J.2    Small, M.3
  • 113
    • 0034358470 scopus 로고    scopus 로고
    • Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields
    • Zidek J., Sun W., Le N. (2000). Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields. Appl. Stat., 49, 63-79.
    • (2000) Appl. Stat. , vol.49 , pp. 63-79
    • Zidek, J.1    Sun, W.2    Le, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.