-
1
-
-
35949002429
-
Malignant astrocytic glioma: Genetics, biology, and paths to treatment
-
COI: 1:CAS:528:DC%2BD2sXhtlSitLrO
-
Furnari, F. B., et al. (2007). Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes & Development,21(21), 2683–2710.
-
(2007)
Genes & Development
, vol.21
, Issue.21
, pp. 2683-2710
-
-
Furnari, F.B.1
-
2
-
-
65649097691
-
Molecular advances of brain tumors in radiation oncology
-
Noda, S. E., et al. (2009). Molecular advances of brain tumors in radiation oncology. Semininars in Radiation Oncology,19(3), 171–178.
-
(2009)
Semininars in Radiation Oncology
, vol.19
, Issue.3
, pp. 171-178
-
-
Noda, S.E.1
-
3
-
-
21344442658
-
Chemotherapy and novel therapeutic approaches in malignant glioma
-
COI: 1:CAS:528:DC%2BD2MXntFGisL8%3D, PID: 15970525
-
Desjardins, A., et al. (2005). Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci,10, 2645–2668.
-
(2005)
Front Biosci
, vol.10
, pp. 2645-2668
-
-
Desjardins, A.1
-
4
-
-
33747749871
-
Angiogenesis in malignant glioma—a target for antitumor therapy?
-
COI: 1:STN:280:DC%2BD28rhtVGqsw%3D%3D
-
Tuettenberg, J., Friedel, C., & Vajkoczy, P. (2006). Angiogenesis in malignant glioma—a target for antitumor therapy? Critical Reviews in Oncology Hematology,59(3), 181–193.
-
(2006)
Critical Reviews in Oncology Hematology
, vol.59
, Issue.3
, pp. 181-193
-
-
Tuettenberg, J.1
Friedel, C.2
Vajkoczy, P.3
-
5
-
-
75449088610
-
FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme
-
COI: 1:CAS:528:DC%2BC3cXjt1eqsw%3D%3D, PID: 19897538
-
Cohen, M. H., et al. (2009). FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist,14(11), 1131–1138.
-
(2009)
Oncologist
, vol.14
, Issue.11
, pp. 1131-1138
-
-
Cohen, M.H.1
-
6
-
-
78651408563
-
Glioblastoma recurrence after cediranib therapy in patients: Lack of “rebound” revascularization as mode of escape
-
PID: 21199795
-
di Tomaso, E., et al. (2011). Glioblastoma recurrence after cediranib therapy in patients: Lack of “rebound” revascularization as mode of escape. Cancer Research,71(1), 19–28.
-
(2011)
Cancer Research
, vol.71
, Issue.1
, pp. 19-28
-
-
di Tomaso, E.1
-
7
-
-
79959996485
-
Pathway inhibition: emerging molecular targets for treating glioblastoma
-
COI: 1:CAS:528:DC%2BC3MXpsVCqu7g%3D, PID: 21636705
-
Wick, W., et al. (2011). Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncology,13(6), 566–579.
-
(2011)
Neuro Oncology
, vol.13
, Issue.6
, pp. 566-579
-
-
Wick, W.1
-
8
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438
-
Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell,116(2), 281–297.
-
(2004)
Cell
, vol.116
, Issue.2
, pp. 281-297
-
-
Bartel, D.P.1
-
9
-
-
28044471565
-
MicroRNA functions in animal development and human disease
-
COI: 1:CAS:528:DC%2BD2MXht12gsbjI, PID: 16224045
-
Alvarez-Garcia, I., & Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development,132(21), 4653–4662.
-
(2005)
Development
, vol.132
, Issue.21
, pp. 4653-4662
-
-
Alvarez-Garcia, I.1
Miska, E.A.2
-
10
-
-
33846188098
-
microRNAs as oncogenes and tumor suppressors
-
COI: 1:CAS:528:DC%2BD2sXntlOnuw%3D%3D
-
Zhang, B., et al. (2007). microRNAs as oncogenes and tumor suppressors. Development Biology,302(1), 1–12.
-
(2007)
Development Biology
, vol.302
, Issue.1
-
-
Zhang, B.1
-
11
-
-
65249121446
-
Emerging functions of microRNAs in glioblastoma
-
COI: 1:CAS:528:DC%2BD1MXkt1yitL8%3D, PID: 19357957
-
Lawler, S., & Chiocca, E. A. (2009). Emerging functions of microRNAs in glioblastoma. Journal of Neuro-oncology,92(3), 297–306.
-
(2009)
Journal of Neuro-oncology
, vol.92
, Issue.3
, pp. 297-306
-
-
Lawler, S.1
Chiocca, E.A.2
-
12
-
-
70350221952
-
MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes
-
COI: 1:CAS:528:DC%2BD1MXht1Skt7rF, PID: 19773441
-
Li, Y., et al. (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research,69(19), 7569–7576.
-
(2009)
Cancer Research
, vol.69
, Issue.19
, pp. 7569-7576
-
-
Li, Y.1
-
13
-
-
56449126945
-
Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal
-
COI: 1:CAS:528:DC%2BD1cXhtlOmt7zL, PID: 19010882
-
Godlewski, J., et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research,68(22), 9125–9130.
-
(2008)
Cancer Research
, vol.68
, Issue.22
, pp. 9125-9130
-
-
Godlewski, J.1
-
14
-
-
79955514336
-
A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs
-
COI: 1:CAS:528:DC%2BC3MXltlGhurs%3D, PID: 21385897
-
Kim, T. M., et al. (2011). A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Research,71(9), 3387–3399.
-
(2011)
Cancer Research
, vol.71
, Issue.9
, pp. 3387-3399
-
-
Kim, T.M.1
-
15
-
-
84873497493
-
MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor
-
COI: 1:CAS:528:DC%2BC3sXivVOltr8%3D, PID: 23390502
-
Lee, H. K., et al. (2013). MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS ONE,8(2), e54652.
-
(2013)
PLoS ONE
, vol.8
, Issue.2
, pp. e54652
-
-
Lee, H.K.1
-
16
-
-
84884997420
-
MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells
-
COI: 1:CAS:528:DC%2BC3sXhsFegsL7E, PID: 23814265
-
Rani, S. B., et al. (2013). MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncology,15(10), 1302–1316.
-
(2013)
Neuro Oncology
, vol.15
, Issue.10
, pp. 1302-1316
-
-
Rani, S.B.1
-
17
-
-
68049109358
-
Growth inhibition by microRNAs that target the insulin receptor substrate-1
-
PID: 19502786
-
La Rocca, G., et al. (2009). Growth inhibition by microRNAs that target the insulin receptor substrate-1. Cell Cycle,8(14), 2255–2259.
-
(2009)
Cell Cycle
, vol.8
, Issue.14
, pp. 2255-2259
-
-
La Rocca, G.1
-
18
-
-
77953414582
-
miR-145-mediated suppression of cell growth, invasion and metastasis
-
COI: 1:CAS:528:DC%2BC3cXkvVKjsLs%3D, PID: 20407606
-
Sachdeva, M., & Mo, Y. Y. (2010). miR-145-mediated suppression of cell growth, invasion and metastasis. American Journal of Translational Research,2(2), 170–180.
-
(2010)
American Journal of Translational Research
, vol.2
, Issue.2
, pp. 170-180
-
-
Sachdeva, M.1
Mo, Y.Y.2
-
19
-
-
84868613149
-
NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma
-
PID: 22869051
-
Speranza, M. C., et al. (2012). NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget,3(7), 723–734.
-
(2012)
Oncotarget
, vol.3
, Issue.7
, pp. 723-734
-
-
Speranza, M.C.1
-
20
-
-
84872866274
-
MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells
-
PID: 23076445
-
Lu, Y., et al. (2013). MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncology Reports,29(1), 67–72.
-
(2013)
Oncology Reports
, vol.29
, Issue.1
, pp. 67-72
-
-
Lu, Y.1
-
21
-
-
84899502994
-
ROCK1, a novel target of miR-145, promotes glioma cell invasion
-
COI: 1:CAS:528:DC%2BC2cXhtVeltLfI, PID: 24573110
-
Wan, X., et al. (2014). ROCK1, a novel target of miR-145, promotes glioma cell invasion. Molecular Medicine Reports,9(5), 1877–1882.
-
(2014)
Molecular Medicine Reports
, vol.9
, Issue.5
, pp. 1877-1882
-
-
Wan, X.1
-
22
-
-
84875784259
-
Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal
-
PID: 23548312
-
Lee, H. K., et al. (2013). Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget,4(2), 346–361.
-
(2013)
Oncotarget
, vol.4
, Issue.2
, pp. 346-361
-
-
Lee, H.K.1
-
23
-
-
84901283474
-
miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2
-
COI: 1:CAS:528:DC%2BC2cXmvFGhu7o%3D, PID: 24777293
-
Shi, L., et al. (2014). miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Medicine,16(2), 517–528.
-
(2014)
Neuromolecular Medicine
, vol.16
, Issue.2
, pp. 517-528
-
-
Shi, L.1
-
24
-
-
67349149082
-
MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells
-
COI: 1:CAS:528:DC%2BD1MXosVCltrY%3D, PID: 19409607
-
Xu, N., et al. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell,137(4), 647–658.
-
(2009)
Cell
, vol.137
, Issue.4
, pp. 647-658
-
-
Xu, N.1
-
25
-
-
33644857025
-
Gene regulation by microRNAs
-
COI: 1:CAS:528:DC%2BD28Xis1eht7Y%3D
-
Carthew, R. W. (2006). Gene regulation by microRNAs. Current Opinion in Genetics & Development,16(2), 203–208.
-
(2006)
Current Opinion in Genetics & Development
, vol.16
, Issue.2
, pp. 203-208
-
-
Carthew, R.W.1
-
26
-
-
81155124251
-
MicroRNAs in the pathogenesis of cancer
-
COI: 1:CAS:528:DC%2BC3MXhsVOjsLnI, PID: 22082758
-
Lovat, F., Valeri, N., & Croce, C. M. (2011). MicroRNAs in the pathogenesis of cancer. Seminars in Oncology,38(6), 724–733.
-
(2011)
Seminars in Oncology
, vol.38
, Issue.6
, pp. 724-733
-
-
Lovat, F.1
Valeri, N.2
Croce, C.M.3
-
27
-
-
84857109002
-
miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu
-
COI: 1:CAS:528:DC%2BC3MXos1Omsbo%3D, PID: 21743492
-
Quintavalle, C., et al. (2012). miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene,31(7), 858–868.
-
(2012)
Oncogene
, vol.31
, Issue.7
, pp. 858-868
-
-
Quintavalle, C.1
-
28
-
-
79951810604
-
MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8
-
COI: 1:CAS:528:DC%2BC3cXhtlSgtbnK, PID: 20956944
-
Fang, L., et al. (2011). MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene,30(7), 806–821.
-
(2011)
Oncogene
, vol.30
, Issue.7
, pp. 806-821
-
-
Fang, L.1
-
29
-
-
68249139817
-
MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC
-
COI: 1:CAS:528:DC%2BD1MXovVels7k%3D
-
Sasayama, T., et al. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer,125(6), 1407–1413.
-
(2009)
International Journal of Cancer
, vol.125
, Issue.6
, pp. 1407-1413
-
-
Sasayama, T.1
-
30
-
-
78650126775
-
Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells
-
COI: 1:CAS:528:DC%2BC3cXhtlClu7fP, PID: 20667897
-
Kefas, B., et al. (2010). Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol,12(11), 1102–1112.
-
(2010)
Neuro Oncol
, vol.12
, Issue.11
, pp. 1102-1112
-
-
Kefas, B.1
-
31
-
-
0028911678
-
Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop
-
COI: 1:STN:280:DyaK2M7jtVahtA%3D%3D
-
Guha, A., et al. (1995). Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. International Journal of Cancer,60(2), 168–173.
-
(1995)
International Journal of Cancer
, vol.60
, Issue.2
, pp. 168-173
-
-
Guha, A.1
-
32
-
-
0033119572
-
Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase
-
COI: 1:CAS:528:DyaK1MXisVWktb8%3D, PID: 10197615
-
Wang, D., et al. (1999). Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Research,59(7), 1464–1472.
-
(1999)
Cancer Research
, vol.59
, Issue.7
, pp. 1464-1472
-
-
Wang, D.1
-
33
-
-
0036645057
-
Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors
-
COI: 1:CAS:528:DC%2BD38XltF2jtbs%3D, PID: 12097282
-
Lokker, N. A., et al. (2002). Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Research,62(13), 3729–3735.
-
(2002)
Cancer Research
, vol.62
, Issue.13
, pp. 3729-3735
-
-
Lokker, N.A.1
-
34
-
-
0029401049
-
Platelet-derived growth factor in human glioma
-
COI: 1:STN:280:DyaK287lslGgsA%3D%3D, PID: 8586462
-
Westermark, B., Heldin, C. H., & Nister, M. (1995). Platelet-derived growth factor in human glioma. Glia,15(3), 257–263.
-
(1995)
Glia
, vol.15
, Issue.3
, pp. 257-263
-
-
Westermark, B.1
Heldin, C.H.2
Nister, M.3
-
35
-
-
38449097166
-
Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma
-
PID: 17622648
-
de Bouard, S., et al. (2007). Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol,9(4), 412–423.
-
(2007)
Neuro Oncol
, vol.9
, Issue.4
, pp. 412-423
-
-
de Bouard, S.1
-
36
-
-
78149478057
-
MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib
-
COI: 1:CAS:528:DC%2BC3cXpvFSltL8%3D, PID: 20179017
-
Chahal, M., et al. (2010). MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncology,12(8), 822–833.
-
(2010)
Neuro Oncology
, vol.12
, Issue.8
, pp. 822-833
-
-
Chahal, M.1
-
37
-
-
0033924881
-
Effects of SU101 in combination with cytotoxic agents on the growth of subcutaneous tumor xenografts
-
COI: 1:CAS:528:DC%2BD3cXlslenuro%3D, PID: 10914743
-
Strawn, L. M., et al. (2000). Effects of SU101 in combination with cytotoxic agents on the growth of subcutaneous tumor xenografts. Clinical Cancer Research,6(7), 2931–2940.
-
(2000)
Clinical Cancer Research
, vol.6
, Issue.7
, pp. 2931-2940
-
-
Strawn, L.M.1
-
38
-
-
40949141801
-
Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide
-
PID: 18316579
-
Zhou, Q., Guo, P., & Gallo, J. M. (2008). Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clinical Cancer Research,14(5), 1540–1549.
-
(2008)
Clinical Cancer Research
, vol.14
, Issue.5
, pp. 1540-1549
-
-
Zhou, Q.1
Guo, P.2
Gallo, J.M.3
-
39
-
-
79251478764
-
Sunitinib in metastatic renal cell carcinoma patients with brain metastases
-
COI: 1:CAS:528:DC%2BC3MXitFKitL8%3D, PID: 20862748
-
Gore, M. E., et al. (2011). Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer,117(3), 501–509.
-
(2011)
Cancer
, vol.117
, Issue.3
, pp. 501-509
-
-
Gore, M.E.1
-
40
-
-
84887950401
-
Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain
-
COI: 1:CAS:528:DC%2BC3sXhvVyiu7nL, PID: 24113148
-
Oberoi, R. K., Mittapalli, R. K., & Elmquist, W. F. (2013). Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. Journal of Pharmacology and Experimental Therapeutics,347(3), 755–764.
-
(2013)
Journal of Pharmacology and Experimental Therapeutics
, vol.347
, Issue.3
, pp. 755-764
-
-
Oberoi, R.K.1
Mittapalli, R.K.2
Elmquist, W.F.3
|