메뉴 건너뛰기




Volumn 4, Issue MAY, 2015, Pages

The biological function of an insect antifreeze protein simulated by molecular dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ANTIFREEZE PROTEIN; ICE; INSECT PROTEIN; PROTEIN BINDING; THREONINE;

EID: 84930662128     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.05142     Document Type: Article
Times cited : (92)

References (53)
  • 3
    • 0030785111 scopus 로고    scopus 로고
    • Ice-binding mechanism of winter flounder antifreeze proteins
    • Cheng A, Merz KM Jr. 1997. Ice-binding mechanism of winter flounder antifreeze proteins. Biophysical Journal 73: 2851. doi: 10.1016/S0006-3495(97)78315-2.
    • (1997) Biophysical Journal , vol.73 , pp. 2851
    • Cheng, A.1    Merz, K.M.2
  • 4
    • 84922034740 scopus 로고    scopus 로고
    • Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming
    • Cziko PA, DeVries AL, Evans CW, Cheng CH. 2014. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proceedings of the National Academy of Sciences of USA 111:14583-14588. doi: 10.1073/pnas.1410256111.
    • (2014) Proceedings of the National Academy of Sciences of USA , vol.111 , pp. 14583-14588
    • Cziko, P.A.1    DeVries, A.L.2    Evans, C.W.3    Cheng, C.H.4
  • 6
    • 0034268189 scopus 로고    scopus 로고
    • Source of the ice-binding specificity of antifreeze protein type I
    • Dalal P, Sönnichsen SD. 2000. Source of the ice-binding specificity of antifreeze protein type I. Journal of Chemical Information and Modeling 40:1276-1284. doi: 10.1021/ci000449b.
    • (2000) Journal of Chemical Information and Modeling , vol.40 , pp. 1276-1284
    • Dalal, P.1    Sönnichsen, S.D.2
  • 7
    • 0025325036 scopus 로고
    • Biochemistry of fish antifreeze proteins
    • Davies PL, Hew CL. 1990. Biochemistry of fish antifreeze proteins. FASEB Journal 4:2460-2468.
    • (1990) FASEB Journal , vol.4 , pp. 2460-2468
    • Davies, P.L.1    Hew, C.L.2
  • 8
    • 0343710643 scopus 로고
    • The influence of dislocations on grystal growth
    • Frank FC. 1949. The influence of dislocations on grystal growth. Discussions of the Faraday Society 5:48-54. doi: 10.1039/DF9490500048.
    • (1949) Discussions of the Faraday Society , vol.5 , pp. 48-54
    • Frank, F.C.1
  • 9
    • 34547649512 scopus 로고    scopus 로고
    • The melting point of ice I for common water models calculated from direct coexistence of the solid-liquid interface
    • García Fernández RG, Abascal JL, Vega C. 2006. The melting point of ice I for common water models calculated from direct coexistence of the solid-liquid interface. The Journal of Chemical Physics 124: 144506. doi: 10.1063/1.2183308.
    • (2006) The Journal of Chemical Physics , vol.124 , pp. 144506
    • García Fernández, R.G.1    Abascal, J.L.2    Vega, C.3
  • 11
    • 77951131045 scopus 로고    scopus 로고
    • Temperature dependence of protein dynamics simulated with three different water models
    • Glass DC, Krishnan M, Nutt DR, Smith JC. 2010. Temperature dependence of protein dynamics simulated with three different water models. Journal of Chemical Theory and Computation 6:1390-1400. doi: 10.1021/ct9006508.
    • (2010) Journal of Chemical Theory and Computation , vol.6 , pp. 1390-1400
    • Glass, D.C.1    Krishnan, M.2    Nutt, D.R.3    Smith, J.C.4
  • 12
    • 0034691594 scopus 로고    scopus 로고
    • β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect
    • Graether SP, Kuiper MJ, GagnéSM, Walker VK, Jia Z, Sykes BD, Davies PL. 2000. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325-328. doi: 10.1038/35018610.
    • (2000) Nature , vol.406 , pp. 325-328
    • Graether, S.P.1    Kuiper, M.J.2    GagnéSM3    Walker, V.K.4    Jia, Z.5    Sykes, B.D.6    Davies, P.L.7
  • 14
    • 38549124944 scopus 로고    scopus 로고
    • Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface
    • Handel R, Davidchack RL, Anwar J, Bruhko A. 2008. Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface. Physical Review Letters 100:036104.
    • (2008) Physical Review Letters , vol.100 , pp. 036104
    • Handel, R.1    Davidchack, R.L.2    Anwar, J.3    Bruhko, A.4
  • 15
    • 0033540633 scopus 로고    scopus 로고
    • Winter flounder 'antifreeze' proteins: Synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions
    • Haymet AD, Ward LG, Harding MM. 1999. Winter flounder 'antifreeze' proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions. Journal of the American Chemical Society 121:941-948. doi: 10.1021/ja9801341.
    • (1999) Journal of the American Chemical Society , vol.121 , pp. 941-948
    • Haymet, A.D.1    Ward, L.G.2    Harding, M.M.3
  • 18
    • 0036470053 scopus 로고    scopus 로고
    • Antifreeze proteins: An unusual receptor-ligand interaction
    • Jia Z, Davies PL. 2002. Antifreeze proteins: an unusual receptor-ligand interaction. Trends in Biochemical Sciences 27:101-106. doi: 10.1016/S0968-0004(01)02028-X.
    • (2002) Trends in Biochemical Sciences , vol.27 , pp. 101-106
    • Jia, Z.1    Davies, P.L.2
  • 19
    • 0027406649 scopus 로고
    • Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: Correlation between side chain spacing and ice lattice
    • Jorgensen H, Mori M, Matsui H, Kanaoka M, Yanagi H, Yabusaki Y, Kikuzono Y. 1993. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice. Protein Engineering 6:19-27. doi: 10.1093/protein/6.1.19.
    • (1993) Protein Engineering , vol.6 , pp. 19-27
    • Jorgensen, H.1    Mori, M.2    Matsui, H.3    Kanaoka, M.4    Yanagi, H.5    Yabusaki, Y.6    Kikuzono, Y.7
  • 21
    • 2442665207 scopus 로고    scopus 로고
    • Theoretical study of interaction of winter flounder antifreeze protein with ice
    • Jorov A, Zhorov BS, Yang DS. 2004. Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science 13:1524-1537. doi: 10.1110/ps.04641104.
    • (2004) Protein Science , vol.13 , pp. 1524-1537
    • Jorov, A.1    Zhorov, B.S.2    Yang, D.S.3
  • 22
    • 84996254417 scopus 로고
    • Step growth on ice during the freezing of pure water
    • Ketcham WM, Hobbs PV. 1968. Step growth on ice during the freezing of pure water. Philosophical Magazine 18: 659-661. doi: 10.1080/1478643688227468.
    • (1968) Philosophical Magazine , vol.18 , pp. 659-661
    • Ketcham, W.M.1    Hobbs, P.V.2
  • 23
    • 0025959821 scopus 로고
    • Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes
    • Knight CA, Cheng CC, DeVries AL. 1991. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophysical Journal 59:409. doi: 10.1016/S0006-3495(91)82234-2.
    • (1991) Biophysical Journal , vol.59 , pp. 409
    • Knight, C.A.1    Cheng, C.C.2    DeVries, A.L.3
  • 24
    • 0037306916 scopus 로고    scopus 로고
    • The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0 62-°A resolution reveals structural microheterogeneity of protein and solvation
    • Ko T, Robinson H, Gao YG, Cheng CH, DeVries AL, Wang AH. 2003. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-°A resolution reveals structural microheterogeneity of protein and solvation. Biophysical Journal 84:1228-1237. doi: 10.1016/S0006-3495(03)74938-8.
    • (2003) Biophysical Journal , vol.84 , pp. 1228-1237
    • Ko, T.1    Robinson, H.2    Gao, Y.G.3    Cheng, C.H.4    DeVries, A.L.5    Wang, A.H.6
  • 25
    • 0002648690 scopus 로고
    • A study of ice sintering
    • Kuroiwa D. 1961. A study of ice sintering. Tellus 13:252-259. doi: 10.1111/j.2153-3490.1961.tb00082.x.
    • (1961) Tellus , vol.13 , pp. 252-259
    • Kuroiwa, D.1
  • 27
    • 79958111892 scopus 로고    scopus 로고
    • The Thr-and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix
    • Lin FH, Davies PL, Graham LA. 2011. The Thr-and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix. Biochemistry 50:4467-4478. doi: 10.1021/bi2003108.
    • (2011) Biochemistry , vol.50 , pp. 4467-4478
    • Lin, F.H.1    Davies, P.L.2    Graham, L.A.3
  • 28
    • 0034691568 scopus 로고    scopus 로고
    • Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein
    • Liou YC, Tocilj A, Davies PL, Jia Z. 2000. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322-324. doi: 10.1038/35018604.
    • (2000) Nature , vol.406 , pp. 322-324
    • Liou, Y.C.1    Tocilj, A.2    Davies, P.L.3    Jia, Z.4
  • 29
    • 21244461456 scopus 로고    scopus 로고
    • Systematic size study of an insect antifreeze protein and its interaction with ice
    • Liu K, Jia Z, Chen G, Tung C, Liu R. 2005. Systematic size study of an insect antifreeze protein and its interaction with ice. Biophysical Journal 88:953-958. doi: 10.1529/biophysj.104.051169.
    • (2005) Biophysical Journal , vol.88 , pp. 953-958
    • Liu, K.1    Jia, Z.2    Chen, G.3    Tung, C.4    Liu, R.5
  • 33
    • 0346096861 scopus 로고    scopus 로고
    • Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity
    • Marshall CB, Tomczak MM, Gauthier SY, Kuiper MJ, Lankin C, Walker VK, Davies PL. 2004. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Biochemistry 43:148-154. doi: 10. 1021/bi035605x.
    • (2004) Biochemistry , vol.43 , pp. 148-154
    • Marshall, C.B.1    Tomczak, M.M.2    Gauthier, S.Y.3    Kuiper, M.J.4    Lankin, C.5    Walker, V.K.6    Davies, P.L.7
  • 34
    • 0029291157 scopus 로고
    • Binding of an antifreeze polypeptide to an ice/water interface via computer simulation
    • McDonald SM, White A, Clancy P. 1995. Binding of an antifreeze polypeptide to an ice/water interface via computer simulation. American Institute of Chemical Engineers Journal 41:959-973. doi: 10.1002/aic.690410426.
    • (1995) American Institute of Chemical Engineers Journal , vol.41 , pp. 959-973
    • McDonald, S.M.1    White, A.2    Clancy, P.3
  • 37
    • 84900340510 scopus 로고    scopus 로고
    • Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein
    • Midya US, Bandyopadhyay S. 2014. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. The Journal of Physical Chemistry B 118:4743-4752. doi: 10.1021/jp412528b.
    • (2014) The Journal of Physical Chemistry B , vol.118 , pp. 4743-4752
    • Midya, U.S.1    Bandyopadhyay, S.2
  • 38
    • 48549083723 scopus 로고    scopus 로고
    • Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: A molecular dynamics study
    • Nada H, Furukawa Y. 2008. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study. The Journal of Physical chemistry B 112:7111-7119. doi: 10.1021/ jp711977g.
    • (2008) The Journal of Physical chemistry B , vol.112 , pp. 7111-7119
    • Nada, H.1    Furukawa, Y.2
  • 39
    • 80455167888 scopus 로고    scopus 로고
    • Growth inhibition at the ice prismatic plane induced by a spruce budworm antifreeze protein: A molecular dynamics simulation study
    • Nada H, Furukawa Y. 2011. Growth inhibition at the ice prismatic plane induced by a spruce budworm antifreeze protein: a molecular dynamics simulation study. Physical Chemistry Chemical Physics 13:19936-19942. doi: 10. 1039/c1cp21929d.
    • (2011) Physical Chemistry Chemical Physics , vol.13 , pp. 19936-19942
    • Nada, H.1    Furukawa, Y.2
  • 40
    • 84863769536 scopus 로고    scopus 로고
    • Antifreeze proteins: Computer simulation studies on the mechanism of ice growth inhibition
    • Nada H, Furukawa Y. 2012. Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition. Polymer Journal 44:690-698. doi: 10.1038/pj.2012.13.
    • (2012) Polymer Journal , vol.44 , pp. 690-698
    • Nada, H.1    Furukawa, Y.2
  • 41
    • 58149148303 scopus 로고    scopus 로고
    • Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations
    • Nutt DR, Smith JC. 2008. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Journal of the American Chemical Society 130:13066-13073. doi: 10.1021/ ja8034027.
    • (2008) Journal of the American Chemical Society , vol.130 , pp. 13066-13073
    • Nutt, D.R.1    Smith, J.C.2
  • 45
    • 0042183228 scopus 로고
    • Adsorption inhibition as a mechanism of freezing resistance in polar fishes
    • Raymond JA, DeVries AL. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceedings of the National Academy of Sciences of USA 74:2589-2593. doi: 10.1016/0305-0491(88)90302-1.
    • (1977) Proceedings of the National Academy of Sciences of USA , vol.74 , pp. 2589-2593
    • Raymond, J.A.1    DeVries, A.L.2
  • 47
    • 0029013417 scopus 로고
    • Ice-binding structure and mechanism of an antifreeze protein from winter flounder
    • Sicheri F, Yang DS. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427-431. doi: 10.1038/375427a0.
    • (1995) Nature , vol.375 , pp. 427-431
    • Sicheri, F.1    Yang, D.S.2
  • 48
    • 18744375794 scopus 로고    scopus 로고
    • The melting temperature of most common models of water
    • Vega C, Sanz E, Abascal JL. 2005. The melting temperature of most common models of water. The Journal of Chemical Physics 122:114507. doi: 10.1063/1.1862245.
    • (2005) The Journal of Chemical Physics , vol.122 , pp. 114507
    • Vega, C.1    Sanz, E.2    Abascal, J.L.3
  • 49
    • 0027058609 scopus 로고
    • A model for binding of an antifreeze polypeptide to ice
    • Wen D, Laursen RA. 1992. A model for binding of an antifreeze polypeptide to ice. Biophysical Journal 63:1659. doi: 10.1016/S0006-3495(92)81750-2.
    • (1992) Biophysical Journal , vol.63 , pp. 1659
    • Wen, D.1    Laursen, R.A.2
  • 50
    • 34548647991 scopus 로고    scopus 로고
    • Antifreeze proteins at the ice/water interface: Three calculated discriminating properties for orientation of type I proteins
    • Wierzbicki A, Dalal P, Cheatham TE III, Knickelbein JE, Haymet ADJ, Madura JD. 2007. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophysical Journal 93:1442-1451. doi: 10.1529/biophysj.107.105189.
    • (2007) Biophysical Journal , vol.93 , pp. 1442-1451
    • Wierzbicki, A.1    Dalal, P.2    Cheatham, T.E.3    Knickelbein, J.E.4    Haymet, A.D.J.5    Madura, J.D.6
  • 52
    • 9144257407 scopus 로고    scopus 로고
    • Antifreeze proteins: Structures and mechanisms of function
    • Yeh Y, Feeney RE. 1996. Antifreeze proteins: structures and mechanisms of function. Chemical Reviews 96: 601-618. doi: 10.1021/cr950260c.
    • (1996) Chemical Reviews , vol.96 , pp. 601-618
    • Yeh, Y.1    Feeney, R.E.2
  • 53
    • 0032567416 scopus 로고    scopus 로고
    • Structure-function relationships in a type I antifreeze polypeptide the role of threonine methyl and hydroxyl groups in antifreeze activity
    • ZhangW, Laursen RA. 1998. Structure-function relationships in a type I antifreeze polypeptide the role of threonine methyl and hydroxyl groups in antifreeze activity. The Journal of Biological Chemistry 273:34806-34812. doi: 10. 1074/jbc.273.52.34806.
    • (1998) The Journal of Biological Chemistry , vol.273 , pp. 34806-34812
    • ZhangW1    Laursen, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.