메뉴 건너뛰기




Volumn 31, Issue 6, 2015, Pages 307-315

When bigger is better: The role of polyploidy in organogenesis

Author keywords

Cell cycle; Development; Endocycle; Endomitosis; Endoreduplication

Indexed keywords

ANIMAL CELL; CELL DIFFERENTIATION; CONTROLLED STUDY; HYPERTROPHY; NONHUMAN; ORGAN SIZE; ORGANOGENESIS; POLYPLOIDY; PRIORITY JOURNAL; REVIEW; TISSUE REGENERATION; WOUND HEALING; ANIMAL; BIOLOGICAL MODEL; CELL CYCLE; CELL SIZE; GENETICS; METABOLISM; PLANT CELL;

EID: 84930477004     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.03.011     Document Type: Review
Times cited : (211)

References (75)
  • 1
    • 84877353323 scopus 로고    scopus 로고
    • Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm
    • Sabelli P.A., et al. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1827-1836.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1827-1836
    • Sabelli, P.A.1
  • 2
    • 84876737263 scopus 로고    scopus 로고
    • Aneuploidy, polyploidy and ploidy reversal in the liver
    • Duncan A.W. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin. Cell Dev. Biol. 2013, 24:347-356.
    • (2013) Semin. Cell Dev. Biol. , vol.24 , pp. 347-356
    • Duncan, A.W.1
  • 3
    • 0032568795 scopus 로고    scopus 로고
    • Coordination of growth and cell division in the Drosophila wing
    • Neufeld T.P., et al. Coordination of growth and cell division in the Drosophila wing. Cell 1998, 93:1183-1193.
    • (1998) Cell , vol.93 , pp. 1183-1193
    • Neufeld, T.P.1
  • 4
    • 67650430047 scopus 로고    scopus 로고
    • Cell growth and homeostasis in proliferating animal cells
    • Tzur A., et al. Cell growth and homeostasis in proliferating animal cells. Science 2009, 325:167-171.
    • (2009) Science , vol.325 , pp. 167-171
    • Tzur, A.1
  • 5
    • 84866070943 scopus 로고    scopus 로고
    • Direct observation of mammlian growth and size regulation
    • Son S., et al. Direct observation of mammlian growth and size regulation. Nat. Methods 2012, 9:910-912.
    • (2012) Nat. Methods , vol.9 , pp. 910-912
    • Son, S.1
  • 7
    • 0001135142 scopus 로고
    • Cell volume and the evolution of eukaryotic genome size
    • John Wiley and Sons, T. Cavalier-Smith (Ed.)
    • Cavalier-Smith T. Cell volume and the evolution of eukaryotic genome size. The Evolution of Genome Size 1985, 105-185. John Wiley and Sons. T. Cavalier-Smith (Ed.).
    • (1985) The Evolution of Genome Size , pp. 105-185
    • Cavalier-Smith, T.1
  • 8
    • 0025874499 scopus 로고
    • Regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny
    • Smith A.V., Orr-Weaver T.L. Regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development 1991, 112:997-1008.
    • (1991) Development , vol.112 , pp. 997-1008
    • Smith, A.V.1    Orr-Weaver, T.L.2
  • 9
    • 33845340819 scopus 로고    scopus 로고
    • How flies get their size: genetics meets physiology
    • Edgar B.A. How flies get their size: genetics meets physiology. Nat. Rev. Genet. 2006, 7:907-916.
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 907-916
    • Edgar, B.A.1
  • 10
    • 0036435528 scopus 로고    scopus 로고
    • Patterning through differential endoreduplication in epithelial organogenesis of the chordate, Oikopleura dioica
    • Ganot P., Thompson E.M. Patterning through differential endoreduplication in epithelial organogenesis of the chordate, Oikopleura dioica. Dev. Biol. 2002, 252:59-71.
    • (2002) Dev. Biol. , vol.252 , pp. 59-71
    • Ganot, P.1    Thompson, E.M.2
  • 11
    • 84902377756 scopus 로고    scopus 로고
    • Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory
    • Chevalier C., et al. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. J. Exp. Bot. 2014, 65:2731-2746.
    • (2014) J. Exp. Bot. , vol.65 , pp. 2731-2746
    • Chevalier, C.1
  • 12
    • 84866482187 scopus 로고    scopus 로고
    • Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth
    • Bourdon M., et al. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 2012, 139:3817-3826.
    • (2012) Development , vol.139 , pp. 3817-3826
    • Bourdon, M.1
  • 13
    • 70350629054 scopus 로고    scopus 로고
    • Endoreplication: polyploidy with purpose
    • Lee H.O., et al. Endoreplication: polyploidy with purpose. Genes Dev. 2009, 23:2461-2477.
    • (2009) Genes Dev. , vol.23 , pp. 2461-2477
    • Lee, H.O.1
  • 14
    • 84890492207 scopus 로고    scopus 로고
    • Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability
    • Hassel C., et al. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 2014, 141:112-123.
    • (2014) Development , vol.141 , pp. 112-123
    • Hassel, C.1
  • 15
    • 56549098376 scopus 로고    scopus 로고
    • Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress
    • Mehrotra S., et al. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev. 2008, 22:3158-3171.
    • (2008) Genes Dev. , vol.22 , pp. 3158-3171
    • Mehrotra, S.1
  • 16
    • 84901303675 scopus 로고    scopus 로고
    • Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis
    • de Renty C., et al. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis. PLoS ONE 2014, 9:e97434.
    • (2014) PLoS ONE , vol.9 , pp. e97434
    • de Renty, C.1
  • 17
    • 84870513278 scopus 로고    scopus 로고
    • Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella
    • Buntrock L., et al. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella. Genome 2012, 55:755-763.
    • (2012) Genome , vol.55 , pp. 755-763
    • Buntrock, L.1
  • 18
    • 77958576864 scopus 로고    scopus 로고
    • Error-prone polyploid mitosis during normal Drosophila development
    • Fox D.T., et al. Error-prone polyploid mitosis during normal Drosophila development. Genes Dev. 2010, 24:2294-2302.
    • (2010) Genes Dev. , vol.24 , pp. 2294-2302
    • Fox, D.T.1
  • 19
    • 84866000846 scopus 로고    scopus 로고
    • Aneuploidy as a mechanism for stress-induced liver adaptation
    • Duncan A.W., et al. Aneuploidy as a mechanism for stress-induced liver adaptation. J. Clin. Invest. 2012, 122:3307-3315.
    • (2012) J. Clin. Invest. , vol.122 , pp. 3307-3315
    • Duncan, A.W.1
  • 20
    • 84855303330 scopus 로고    scopus 로고
    • Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity
    • Unhavaithaya Y., Orr-Weaver T.L. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity. Genes Dev. 2012, 26:31-36.
    • (2012) Genes Dev. , vol.26 , pp. 31-36
    • Unhavaithaya, Y.1    Orr-Weaver, T.L.2
  • 21
    • 79959952037 scopus 로고    scopus 로고
    • Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila
    • Desalvo M.K., et al. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia 2011, 59:1322-1340.
    • (2011) Glia , vol.59 , pp. 1322-1340
    • Desalvo, M.K.1
  • 22
    • 78951491636 scopus 로고    scopus 로고
    • The Drosophila blood brain barrier is maintained by GPCR-dependent dynamic actin structures
    • Hatan M., et al. The Drosophila blood brain barrier is maintained by GPCR-dependent dynamic actin structures. J. Cell Biol. 2011, 192:307-319.
    • (2011) J. Cell Biol. , vol.192 , pp. 307-319
    • Hatan, M.1
  • 23
    • 38549095461 scopus 로고    scopus 로고
    • Organization and function of the blood-brain barrier in Drosophila
    • Stork T., et al. Organization and function of the blood-brain barrier in Drosophila. J. Neurosci. 2008, 28:587-597.
    • (2008) J. Neurosci. , vol.28 , pp. 587-597
    • Stork, T.1
  • 24
    • 84905708331 scopus 로고    scopus 로고
    • Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells
    • Speder P., Brand A.H. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev. Cell 2014, 30:309-321.
    • (2014) Dev. Cell , vol.30 , pp. 309-321
    • Speder, P.1    Brand, A.H.2
  • 25
    • 20444430424 scopus 로고    scopus 로고
    • Development of structures and transport functions in the mouse placenta
    • Watson E.D., Cross J.C. Development of structures and transport functions in the mouse placenta. Physiology 2005, 20:180-193.
    • (2005) Physiology , vol.20 , pp. 180-193
    • Watson, E.D.1    Cross, J.C.2
  • 26
    • 0016246196 scopus 로고
    • Cytological studies on the organization of DNA in giant trophoblast nuclei of the mouse and rat
    • Barlow P.W., Sherman M.I. Cytological studies on the organization of DNA in giant trophoblast nuclei of the mouse and rat. Chromosoma 1974, 47:119-131.
    • (1974) Chromosoma , vol.47 , pp. 119-131
    • Barlow, P.W.1    Sherman, M.I.2
  • 27
    • 84878696109 scopus 로고    scopus 로고
    • Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells
    • Sher N., et al. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:9368-9373.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 9368-9373
    • Sher, N.1
  • 28
    • 28444470545 scopus 로고    scopus 로고
    • Cell reproduction and genome multiplication in the proliferative and invasive trophoblast cell populations of the mammalian placenta
    • Zybina T.G., Zybina E.V. Cell reproduction and genome multiplication in the proliferative and invasive trophoblast cell populations of the mammalian placenta. Cell Biol. Int. 2005, 29:1071-1083.
    • (2005) Cell Biol. Int. , vol.29 , pp. 1071-1083
    • Zybina, T.G.1    Zybina, E.V.2
  • 29
    • 84869079592 scopus 로고    scopus 로고
    • Canonical and atypical E2Fs regulate the mammalian endocycle
    • Chen H.Z., et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat. Cell Biol. 2012, 14:1192-1202.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1192-1202
    • Chen, H.Z.1
  • 30
    • 84893171107 scopus 로고    scopus 로고
    • Cycling up the epidermis: reconciling 100 years of debate
    • Gandarillas A., Freije A. Cycling up the epidermis: reconciling 100 years of debate. Exp. Dermatol. 2014, 23:87-91.
    • (2014) Exp. Dermatol. , vol.23 , pp. 87-91
    • Gandarillas, A.1    Freije, A.2
  • 31
    • 84871480959 scopus 로고    scopus 로고
    • The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint
    • Gandarillas A. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 2012, 11:4507-4516.
    • (2012) Cell Cycle , vol.11 , pp. 4507-4516
    • Gandarillas, A.1
  • 32
    • 78650931626 scopus 로고    scopus 로고
    • A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication
    • Zanet J., et al. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication. PLoS ONE 2010, 5:e15701.
    • (2010) PLoS ONE , vol.5 , pp. e15701
    • Zanet, J.1
  • 33
    • 77952942458 scopus 로고    scopus 로고
    • Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana
    • Roeder A.H., et al. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol. 2010, 8:e1000367.
    • (2010) PLoS Biol. , vol.8 , pp. e1000367
    • Roeder, A.H.1
  • 34
    • 84868544074 scopus 로고    scopus 로고
    • Cell cycle regulates cell type in the Arabidopsis sepal
    • Roeder A.H., et al. Cell cycle regulates cell type in the Arabidopsis sepal. Development 2012, 139:4416-4427.
    • (2012) Development , vol.139 , pp. 4416-4427
    • Roeder, A.H.1
  • 35
    • 84871485362 scopus 로고    scopus 로고
    • Development of polyploidy of scale-building cells in the wings of Manduca sexta
    • Cho E.H., Nijhout H.F. Development of polyploidy of scale-building cells in the wings of Manduca sexta. Arthropod Struct. Dev. 2013, 42:37-46.
    • (2013) Arthropod Struct. Dev. , vol.42 , pp. 37-46
    • Cho, E.H.1    Nijhout, H.F.2
  • 36
    • 84906861715 scopus 로고    scopus 로고
    • Indispensable pre-mitotic endocycles promote aneuploidy in the Drosophila rectum
    • Schoenfelder K.P., et al. Indispensable pre-mitotic endocycles promote aneuploidy in the Drosophila rectum. Development 2014, 141:3551-3560.
    • (2014) Development , vol.141 , pp. 3551-3560
    • Schoenfelder, K.P.1
  • 37
    • 84892476196 scopus 로고    scopus 로고
    • Morphofunctional transformations of the yolk syncytial layer during zebrafish development
    • Kondakova E.A., Efremov V.I. Morphofunctional transformations of the yolk syncytial layer during zebrafish development. J. Morphol. 2014, 275:206-216.
    • (2014) J. Morphol. , vol.275 , pp. 206-216
    • Kondakova, E.A.1    Efremov, V.I.2
  • 38
    • 0015228716 scopus 로고
    • Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons
    • Lasek R.J., Dower W.J. Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons. Science 1971, 172:278-280.
    • (1971) Science , vol.172 , pp. 278-280
    • Lasek, R.J.1    Dower, W.J.2
  • 39
    • 84864150274 scopus 로고    scopus 로고
    • Whole genome amplification in large neurons of the terrestrial slug Limax
    • Yamagishi M., et al. Whole genome amplification in large neurons of the terrestrial slug Limax. J. Neurochem. 2012, 122:727-737.
    • (2012) J. Neurochem. , vol.122 , pp. 727-737
    • Yamagishi, M.1
  • 40
    • 28444449858 scopus 로고    scopus 로고
    • Endopolyploidy as a morphogenetic factor of development
    • Anisimov A.P. Endopolyploidy as a morphogenetic factor of development. Cell Biol. Int. 2005, 29:993-1004.
    • (2005) Cell Biol. Int. , vol.29 , pp. 993-1004
    • Anisimov, A.P.1
  • 41
    • 0020606845 scopus 로고
    • Identified cholinergic neurons R2 and LPl1 control mucus release in Aplysia
    • Rayport S.G., et al. Identified cholinergic neurons R2 and LPl1 control mucus release in Aplysia. J. Neurophysiol. 1983, 49:864-876.
    • (1983) J. Neurophysiol. , vol.49 , pp. 864-876
    • Rayport, S.G.1
  • 42
    • 84886750136 scopus 로고    scopus 로고
    • Physiological significance of polyploidization in mammalian cells
    • Pandit S.K., et al. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol. 2013, 23:556-566.
    • (2013) Trends Cell Biol. , vol.23 , pp. 556-566
    • Pandit, S.K.1
  • 43
    • 84872611623 scopus 로고    scopus 로고
    • Mammalian heart renewal by pre-existing cardiomyocytes
    • Senyo S.E., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493:433-436.
    • (2013) Nature , vol.493 , pp. 433-436
    • Senyo, S.E.1
  • 44
    • 77952419621 scopus 로고    scopus 로고
    • Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1
    • Liu Z., et al. Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ. Res. 2010, 106:1498-1506.
    • (2010) Circ. Res. , vol.106 , pp. 1498-1506
    • Liu, Z.1
  • 45
    • 84867009100 scopus 로고    scopus 로고
    • Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle
    • Hesse M., et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 2012, 3:1076.
    • (2012) Nat. Commun. , vol.3 , pp. 1076
    • Hesse, M.1
  • 46
    • 0036132551 scopus 로고    scopus 로고
    • Roads to polyploidy: the megakaryocyte example
    • Ravid K., et al. Roads to polyploidy: the megakaryocyte example. J. Cell Physiol. 2002, 190:7-20.
    • (2002) J. Cell Physiol. , vol.190 , pp. 7-20
    • Ravid, K.1
  • 47
    • 0030727534 scopus 로고    scopus 로고
    • Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis
    • Nagata Y., et al. Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J. Cell Biol. 1997, 139:449-457.
    • (1997) J. Cell Biol. , vol.139 , pp. 449-457
    • Nagata, Y.1
  • 48
    • 84921454164 scopus 로고    scopus 로고
    • Functional reprogramming of polyploidization in megakaryocytes
    • Trakala M., et al. Functional reprogramming of polyploidization in megakaryocytes. Dev. Cell 2015, 32:155-167.
    • (2015) Dev. Cell , vol.32 , pp. 155-167
    • Trakala, M.1
  • 49
    • 84893514279 scopus 로고    scopus 로고
    • Endocycling in the path of plant development
    • Breuer C., et al. Endocycling in the path of plant development. Curr. Opin. Plant Biol. 2014, 17:78-85.
    • (2014) Curr. Opin. Plant Biol. , vol.17 , pp. 78-85
    • Breuer, C.1
  • 50
    • 33746430873 scopus 로고    scopus 로고
    • Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population
    • Clauss M.J., et al. Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J. Chem. Ecol. 2006, 32:2351-2373.
    • (2006) J. Chem. Ecol. , vol.32 , pp. 2351-2373
    • Clauss, M.J.1
  • 51
    • 77954169400 scopus 로고    scopus 로고
    • Endoreplication controls cell fate maintenance
    • Bramsiepe J., et al. Endoreplication controls cell fate maintenance. PLoS Genet. 2010, 6:e1000996.
    • (2010) PLoS Genet. , vol.6 , pp. e1000996
    • Bramsiepe, J.1
  • 52
    • 0032915187 scopus 로고    scopus 로고
    • The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis
    • Dej K.J., Spradling A.C. The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development 1999, 126:293-303.
    • (1999) Development , vol.126 , pp. 293-303
    • Dej, K.J.1    Spradling, A.C.2
  • 53
    • 0002031074 scopus 로고
    • Oogenesis
    • Cold Spring Harbor Laboratory Press, M. Bate, A. Martinez Arias (Eds.)
    • Spradling A.C. Oogenesis. The Development of Drosophila melanogaster 1993, 1-70. Cold Spring Harbor Laboratory Press. M. Bate, A. Martinez Arias (Eds.).
    • (1993) The Development of Drosophila melanogaster , pp. 1-70
    • Spradling, A.C.1
  • 54
    • 0030831103 scopus 로고    scopus 로고
    • The Drosophila gene morula inhibits mitotic functions in the endo cell cycle and the mitotic cycle
    • Reed B.H., Orr-Weaver T.L. The Drosophila gene morula inhibits mitotic functions in the endo cell cycle and the mitotic cycle. Development 1997, 124:3543-3553.
    • (1997) Development , vol.124 , pp. 3543-3553
    • Reed, B.H.1    Orr-Weaver, T.L.2
  • 55
    • 0032032532 scopus 로고    scopus 로고
    • Cell cycle control of chorion gene amplification
    • Calvi B.R., et al. Cell cycle control of chorion gene amplification. Genes Dev. 1998, 12:734-744.
    • (1998) Genes Dev. , vol.12 , pp. 734-744
    • Calvi, B.R.1
  • 56
    • 78651420366 scopus 로고    scopus 로고
    • At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells
    • Klusza S., Deng W.M. At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. BioEssays 2011, 33:124-134.
    • (2011) BioEssays , vol.33 , pp. 124-134
    • Klusza, S.1    Deng, W.M.2
  • 57
    • 0034625050 scopus 로고    scopus 로고
    • Somatic polyploidization and cellular proliferation drive body size evolution in nematodes
    • Flemming A.J., et al. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:5285-5290.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5285-5290
    • Flemming, A.J.1
  • 58
    • 18344380428 scopus 로고    scopus 로고
    • A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length
    • Morita K., et al. A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J. 2002, 21:1063-1073.
    • (2002) EMBO J. , vol.21 , pp. 1063-1073
    • Morita, K.1
  • 59
    • 33644755456 scopus 로고    scopus 로고
    • Regulation of growth by ploidy in Caenorhabditis elegans
    • Lozano E., et al. Regulation of growth by ploidy in Caenorhabditis elegans. Curr. Biol. 2006, 16:493-498.
    • (2006) Curr. Biol. , vol.16 , pp. 493-498
    • Lozano, E.1
  • 60
    • 84889078273 scopus 로고    scopus 로고
    • Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium
    • Losick V.P., et al. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 2013, 23:2224-2232.
    • (2013) Curr. Biol. , vol.23 , pp. 2224-2232
    • Losick, V.P.1
  • 61
    • 84878354174 scopus 로고    scopus 로고
    • Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia
    • Tamori Y., Deng W.M. Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev. Cell 2013, 25:350-363.
    • (2013) Dev. Cell , vol.25 , pp. 350-363
    • Tamori, Y.1    Deng, W.M.2
  • 62
    • 84892142557 scopus 로고    scopus 로고
    • Polyploidization in liver tissue
    • Gentric G., Desdouets C. Polyploidization in liver tissue. Am. J. Pathol. 2014, 184:322-331.
    • (2014) Am. J. Pathol. , vol.184 , pp. 322-331
    • Gentric, G.1    Desdouets, C.2
  • 63
    • 0034888997 scopus 로고    scopus 로고
    • Relationship of hepatocyte ploidy levels with body size and growth rate in mammals
    • Vinogradov A.E., et al. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 2001, 44:350-360.
    • (2001) Genome , vol.44 , pp. 350-360
    • Vinogradov, A.E.1
  • 64
    • 85027935727 scopus 로고    scopus 로고
    • Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration
    • Miyaoka Y., et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 2012, 22:1166-1175.
    • (2012) Curr. Biol. , vol.22 , pp. 1166-1175
    • Miyaoka, Y.1
  • 65
    • 84869089971 scopus 로고    scopus 로고
    • E2F8 is essential for polyploidization in mammalian cells
    • Pandit S.K., et al. E2F8 is essential for polyploidization in mammalian cells. Nat. Cell Biol. 2012, 14:1181-1191.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1181-1191
    • Pandit, S.K.1
  • 66
    • 84894567092 scopus 로고    scopus 로고
    • Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth
    • Edgar B.A., et al. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat. Rev. Mol. Cell Biol. 2014, 15:197-210.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 197-210
    • Edgar, B.A.1
  • 68
    • 84870694131 scopus 로고    scopus 로고
    • Endoreplication and polyploidy: insights into development and disease
    • Fox D.T., Duronio R.J. Endoreplication and polyploidy: insights into development and disease. Development 2013, 140:3-12.
    • (2013) Development , vol.140 , pp. 3-12
    • Fox, D.T.1    Duronio, R.J.2
  • 69
    • 82555176576 scopus 로고    scopus 로고
    • Control of Drosophila endocycles by E2F and CRL4(CDT2)
    • Zielke N., et al. Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 2011, 480:123-127.
    • (2011) Nature , vol.480 , pp. 123-127
    • Zielke, N.1
  • 70
    • 0028980858 scopus 로고
    • Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F
    • Duronio R.J., O'Farrell P.H. Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev. 1995, 9:1456-1468.
    • (1995) Genes Dev. , vol.9 , pp. 1456-1468
    • Duronio, R.J.1    O'Farrell, P.H.2
  • 71
    • 0028178124 scopus 로고
    • Developmental control of a G1-S transcriptional program in Drosophila
    • Duronio R.J., O'Farrell P.H. Developmental control of a G1-S transcriptional program in Drosophila. Development 1994, 120:1503-1515.
    • (1994) Development , vol.120 , pp. 1503-1515
    • Duronio, R.J.1    O'Farrell, P.H.2
  • 72
    • 38849155936 scopus 로고    scopus 로고
    • Another notch in stem cell biology: Drosophila intestinal stem cells and the specification of cell fates
    • Wilson A.A., Kotton D.N. Another notch in stem cell biology: Drosophila intestinal stem cells and the specification of cell fates. BioEssays 2008, 30:107-109.
    • (2008) BioEssays , vol.30 , pp. 107-109
    • Wilson, A.A.1    Kotton, D.N.2
  • 73
    • 61449136893 scopus 로고    scopus 로고
    • A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors
    • Morohashi K., Grotewold E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet. 2009, 5:e1000396.
    • (2009) PLoS Genet. , vol.5 , pp. e1000396
    • Morohashi, K.1    Grotewold, E.2
  • 74
    • 3042586965 scopus 로고    scopus 로고
    • Trophoblast stem cells differentiate in vitro into invasive trophoblast giant cells
    • Hemberger M., et al. Trophoblast stem cells differentiate in vitro into invasive trophoblast giant cells. Dev. Biol. 2004, 271:362-371.
    • (2004) Dev. Biol. , vol.271 , pp. 362-371
    • Hemberger, M.1
  • 75
    • 84876336274 scopus 로고    scopus 로고
    • Hepatocytes polyploidization and cell cycle control in liver physiopathology
    • Gentric G., et al. Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int. J. Hepatol. 2012, 2012:282430.
    • (2012) Int. J. Hepatol. , vol.2012 , pp. 282430
    • Gentric, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.