-
1
-
-
84857619411
-
Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application
-
Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 2011;1:35-40
-
(2011)
Quant Imaging Med Surg
, vol.1
, pp. 35-40
-
-
Wang, Y.X.1
-
2
-
-
81855181619
-
Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging
-
Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv 2011;8:1589-608
-
(2011)
Expert Opin Drug Deliv
, vol.8
, pp. 1589-1608
-
-
Arias, J.L.1
-
3
-
-
84869166858
-
Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
-
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012;112:5818-78
-
(2012)
Chem Rev
, vol.112
, pp. 5818-5878
-
-
Reddy, L.H.1
Arias, J.L.2
Nicolas, J.3
Couvreur, P.4
-
4
-
-
84905989428
-
Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges
-
Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 2014;11:1449-70
-
(2014)
Expert Opin Drug Deliv
, vol.11
, pp. 1449-1470
-
-
Laurent, S.1
Saei, A.A.2
Behzadi, S.3
-
5
-
-
84878042350
-
Chemical design of biocompatible iron oxide nanoparticles for medical applications
-
Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 2013;9:1450-66
-
(2013)
Small
, vol.9
, pp. 1450-1466
-
-
Ling, D.1
Hyeon, T.2
-
6
-
-
68949183493
-
Multifunctional magnetic nanoparticles: Design synthesis and biomedical applications
-
Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 2009;42:1097-107
-
(2009)
Acc Chem Res
, vol.42
, pp. 1097-1107
-
-
Gao, J.1
Gu, H.2
Xu, B.3
-
7
-
-
84907374794
-
Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications
-
Jin R, Lin B, Li D, Ai H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 2014;18:18-27
-
(2014)
Curr Opin Pharmacol
, vol.18
, pp. 18-27
-
-
Jin, R.1
Lin, B.2
Li, D.3
Ai, H.4
-
8
-
-
84886583005
-
Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro
-
Murray AR, Kisin E, Inman A, et al. Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 2013;67:461-76
-
(2013)
Cell Biochem Biophys
, vol.67
, pp. 461-476
-
-
Murray, A.R.1
Kisin, E.2
Inman, A.3
-
10
-
-
84862848790
-
In vivo clearance and toxicity of monodisperse iron oxide nanocrystals
-
Gu L, Fang RH, Sailor MJ, Park JH. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 2012;6:4947-54
-
(2012)
ACS Nano
, vol.6
, pp. 4947-4954
-
-
Gu, L.1
Fang, R.H.2
Sailor, M.J.3
Park, J.H.4
-
11
-
-
84964240602
-
Uptake and metabolism of iron oxide nanoparticles in brain cells
-
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014;39:1648-60
-
(2014)
Neurochem Res
, vol.39
, pp. 1648-1660
-
-
Petters, C.1
Irrsack, E.2
Koch, M.3
Dringen, R.4
-
12
-
-
63149176524
-
Synthesis properties, and applications of magnetic iron oxide nanoparticles
-
Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Ch 2009;55:22-45
-
(2009)
Prog Cryst Growth Ch
, vol.55
, pp. 22-45
-
-
Teja, A.S.1
Koh, P.Y.2
-
13
-
-
84930202409
-
-
Institute of Process Engineering, Chinese, Academy of Science CN101219218
-
Institute of Process Engineering, Chinese Academy of Science. Chen G, Shu C, Huizhou L. Temperature sensing parents block polymer/iron oxide magnetic nanocarrier, preparation method and application thereof. CN101219218; 2008
-
(2008)
Temperature Sensing Parents Block Polymer/iron Oxide Magnetic Nanocarrier, Preparation Method and Application Thereof
-
-
Chen, G.1
Shu, C.2
Huizhou, L.3
-
27
-
-
68249116152
-
Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications
-
Qiao R, Yanga C, Mingyuan Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 2009;19:6274-93
-
(2009)
J Mater Chem
, vol.19
, pp. 6274-6293
-
-
Qiao, R.1
Yanga, C.2
Mingyuan Gao, M.3
-
28
-
-
47249140441
-
Magnetic iron oxide nanoparticles: Synthesis stabilization, vectorization, physicochemical characterizations, and biological applications
-
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108:2064-110
-
(2008)
Chem Rev
, vol.108
, pp. 2064-2110
-
-
Laurent, S.1
Forge, D.2
Port, M.3
-
36
-
-
84930215762
-
Biocompatible Magnetic Nano-clusters Containing Iron Oxide Respectively Iron Oxide-boron with Primary Use in Magnetic Drug Targeting and Boron Neutron Capture Therapy
-
Ciobanu N. Biocompatible magnetic nano-clusters containing iron oxide respectively iron oxide-boron with primary use in magnetic drug targeting and boron neutron capture therapy. EP2277544; 2011
-
(2011)
EP2277544
-
-
Ciobanu, N.1
-
40
-
-
39849106802
-
Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules
-
Piao Y, Kim J, Na HB, et al. Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 2008;7:242-7
-
(2008)
Nat Mater
, vol.7
, pp. 242-247
-
-
Piao, Y.1
Kim, J.2
Na, H.B.3
-
47
-
-
75649139085
-
Human serum albumin coated iron oxide nanoparticles for efficient cell labeling
-
Xie J, Wang J, Niu G, et al. Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem Commun (Camb) 2010;46:433-5.
-
(2010)
Chem Commun (Camb)
, vol.46
, pp. 433-435
-
-
Xie, J.1
Wang, J.2
Niu, G.3
-
48
-
-
84870320859
-
Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles
-
Kummitha CM, Malamas AS, Lu ZR. Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles. Int J Nanomedicine 2012;7:5205-14
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 5205-5214
-
-
Kummitha, C.M.1
Malamas, A.S.2
Lu, Z.R.3
-
49
-
-
84855813140
-
Albumin-based nanoparticles as potential controlled release drug delivery systems
-
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012;157:168-82
-
(2012)
J Control Release
, vol.157
, pp. 168-182
-
-
Elzoghby, A.O.1
Samy, W.M.2
Elgindy, N.A.3
-
50
-
-
56949084877
-
Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles
-
Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008;132:171-83
-
(2008)
J Control Release
, vol.132
, pp. 171-183
-
-
Kratz, F.1
-
52
-
-
79952592613
-
Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents
-
Antonelli A, Sfara C, Manuali E, et al. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine (Lond) 2011;6:211-23
-
(2011)
Nanomedicine (Lond)
, vol.6
, pp. 211-223
-
-
Antonelli, A.1
Sfara, C.2
Manuali, E.3
-
53
-
-
79951933087
-
Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics
-
Arias JL, Reddy LH, Othman M, et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011;5(2):1513-21
-
(2011)
ACS Nano
, vol.5
, Issue.2
, pp. 1513-1521
-
-
Arias, J.L.1
Reddy, L.H.2
Othman, M.3
-
55
-
-
84859114401
-
Multifunctional stable fluorescent magnetic nanoparticles
-
Mahmoudi M, Shokrgozar MA. Multifunctional stable fluorescent magnetic nanoparticles. Chem Commun (Camb) 2012;48:3957-9
-
(2012)
Chem Commun (Camb)
, vol.48
, pp. 3957-3959
-
-
Mahmoudi, M.1
Shokrgozar, M.A.2
-
56
-
-
84930215768
-
Evaluation of multimodal imageable formulation for thermochemoembolization of liver cancer
-
Available from [Last accessed 4 November 2014]
-
Liapi E, Wabler M, Gilson W, et al. Evaluation of multimodal imageable formulation for thermochemoembolization of liver cancer. Radiological Society of North America 2011 Scientific Assembly and Annual Meeting. Available from: http://archive. rsna.org/2011/11016234.html [Last accessed 4 November 2014]
-
Radiological Society of North America 2011 Scientific Assembly and Annual Meeting
-
-
Liapi, E.1
Wabler, M.2
Gilson, W.3
-
59
-
-
77953868192
-
An acidic pH-triggered polymeric micelle for dualmodality MR and optical imaging
-
Gao G, Heo H, Lee J, Lee D. An acidic pH-triggered polymeric micelle for dualmodality MR and optical imaging. J Mater Chem 2010;20:5454-61
-
(2010)
J Mater Chem
, vol.20
, pp. 5454-5461
-
-
Gao, G.1
Heo, H.2
Lee, J.3
Lee, D.4
-
60
-
-
77952291860
-
The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages
-
Lunov O, Syrovets T, Buchele B, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 2010;31:5063-71
-
(2010)
Biomaterials
, vol.31
, pp. 5063-5071
-
-
Lunov, O.1
Syrovets, T.2
Buchele, B.3
-
62
-
-
70349653987
-
Simultaneous magnetically directed drug convection and MR imaging
-
Yathindranath V, Hegmann T, van Lierop J, et al. Simultaneous magnetically directed drug convection and MR imaging. Nanotechnology 2009;20:405101
-
(2009)
Nanotechnology
, vol.20
, pp. 405101
-
-
Yathindranath, V.1
Hegmann, T.2
Van Lierop, J.3
-
64
-
-
44949147045
-
Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery
-
Banerjee SS, Chen DH. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology 2008;19:265602
-
(2008)
Nanotechnology
, vol.19
, pp. 265602
-
-
Banerjee, S.S.1
Chen, D.H.2
-
65
-
-
54949122168
-
Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism
-
Hu SH, Chen SY, Liu DM, Hsiao CS. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater 2008;20:2690-5
-
(2008)
Adv Mater
, vol.20
, pp. 2690-2695
-
-
Hu, S.H.1
Chen, S.Y.2
Liu, D.M.3
Hsiao, C.S.4
-
66
-
-
64849095920
-
LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI
-
Meng J, Fan J, Galiana G, et al. LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mat Sci Eng C 2009;29:1467-79
-
(2009)
Mat Sci Eng C
, vol.29
, pp. 1467-1479
-
-
Meng, J.1
Fan, J.2
Galiana, G.3
-
67
-
-
65149101001
-
Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release
-
Tai LA, Tsai PJ, Wang YC, et al. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology 2009;20:135101
-
(2009)
Nanotechnology
, vol.20
, pp. 135101
-
-
Tai, L.A.1
Tsai, P.J.2
Wang, Y.C.3
-
68
-
-
37249085818
-
Temperature-responsive magnetite/PEOPPO-PEO block copolymer nanoparticles for controlled drug targeting delivery
-
Chen S, Li Y, Guo C, et al. Temperature-responsive magnetite/PEOPPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 2007;23:12669-76.
-
(2007)
Langmuir
, vol.23
, pp. 12669-12676
-
-
Chen, S.1
Li, Y.2
Guo, C.3
-
69
-
-
84920511262
-
Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: Cancer therapy by circumventing the skin barrier
-
Rao YF, Chen W, Liang XG, et al. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small 2015;11:239-47.
-
(2015)
Small
, vol.11
, pp. 239-247
-
-
Rao, Y.F.1
Chen, W.2
Liang, X.G.3
-
70
-
-
57449087672
-
Targeting to carcinoma cells with chitosan-and starch-coated magnetic nanoparticles for magnetic hyperthermia
-
Kim DH, Kim KN, Kim KM, Lee YK. Targeting to carcinoma cells with chitosan-and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 2009;88:1-11
-
(2009)
J Biomed Mater Res A
, vol.88
, pp. 1-11
-
-
Kim, D.H.1
Kim, K.N.2
Kim, K.M.3
Lee, Y.K.4
-
71
-
-
84878594952
-
Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy
-
Cunkelman BP, Chen EY, Petryk AA, et al. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy. Proc Soc Photo Opt Instrum Eng 2013;8584:858411
-
(2013)
Proc Soc Photo Opt Instrum Eng
, vol.8584
, pp. 858411
-
-
Cunkelman, B.P.1
Chen, E.Y.2
Petryk, A.A.3
-
72
-
-
84883158369
-
Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking
-
Li L, Jiang W, Luo K, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 2013;3:595-615
-
(2013)
Theranostics
, vol.3
, pp. 595-615
-
-
Li, L.1
Jiang, W.2
Luo, K.3
-
73
-
-
84875120768
-
In vivo MRI tracking of iron oxide nanoparticlelabeled human mesenchymal stem cells in limb ischemia
-
Li XX, Li KA, Qin JB, et al. In vivo MRI tracking of iron oxide nanoparticlelabeled human mesenchymal stem cells in limb ischemia. Int J Nanomedicine 2013;8:1063-73
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 1063-1073
-
-
Li, X.X.1
Li, K.A.2
Qin, J.B.3
-
74
-
-
79955713779
-
Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells
-
Green MD, Snoeck HW. Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells. BMC Med 2011;9:51
-
(2011)
BMC Med
, vol.9
, pp. 51
-
-
Green, M.D.1
Snoeck, H.W.2
-
75
-
-
84862728487
-
Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease
-
Moraes L, Vasconcelos-dos-Santos A, Santana FC, et al. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease. Stem Cell Res 2012;9:143-55
-
(2012)
Stem Cell Res
, vol.9
, pp. 143-155
-
-
Moraes, L.1
Vasconcelos-Dos-Santos, A.2
Santana, F.C.3
-
76
-
-
84890955793
-
In vivo MRI mapping of iron oxidelabeled stem cells transplanted in the heart
-
Ruggiero A, Guenoun J, Smit H, et al. In vivo MRI mapping of iron oxidelabeled stem cells transplanted in the heart. Contrast Media Mol Imaging 2013;8:487-94
-
(2013)
Contrast Media Mol Imaging
, vol.8
, pp. 487-494
-
-
Ruggiero, A.1
Guenoun, J.2
Smit, H.3
-
77
-
-
84930205469
-
MR imaging of stem cell transplants in arthritic joints
-
Daldrup-Link HE, Nejadnik H. MR imaging of stem cell transplants in arthritic joints. J Stem Cell Res Ther 2014;4:165
-
(2014)
J Stem Cell Res Ther
, vol.4
, pp. 165
-
-
Daldrup-Link, H.E.1
Nejadnik, H.2
-
78
-
-
84858006691
-
Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells
-
Zhao Y, Zhang Z, Wang J, et al. Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs 2012;36:247-55
-
(2012)
Artif Organs
, vol.36
, pp. 247-255
-
-
Zhao, Y.1
Zhang, Z.2
Wang, J.3
-
79
-
-
64549134628
-
Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling
-
Horák D, Babic M, Jendelová P, et al. Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J Magn Magn Mater 2009;321:1539-47
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 1539-1547
-
-
Horák, D.1
Babic, M.2
Jendelová, P.3
-
80
-
-
41149137623
-
Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling
-
Babic M, Horák D, Trchová M, et al. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 2008;19:740-50
-
(2008)
Bioconjug Chem
, vol.19
, pp. 740-750
-
-
Babic, M.1
Horák, D.2
Trchová, M.3
-
81
-
-
62549161275
-
Poly(N, N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling
-
Babic M, Horák D, Jendelová P, et al. Poly(N, N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjug Chem 2009;20:283-94
-
(2009)
Bioconjug Chem
, vol.20
, pp. 283-294
-
-
Babic, M.1
Horák, D.2
Jendelová, P.3
-
82
-
-
80052334686
-
The use of oligoperoxide-coated magnetic nanoparticles to label stem cells
-
Sponarová D, Horák D, Trchová M, et al. The use of oligoperoxide-coated magnetic nanoparticles to label stem cells. J Biomed Nanotechnol 2011;7:384-94
-
(2011)
J Biomed Nanotechnol
, vol.7
, pp. 384-394
-
-
Sponarová, D.1
Horák, D.2
Trchová, M.3
-
83
-
-
84886804048
-
Tracking immune cells in vivo using magnetic resonance imaging
-
Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 2013;13:755-63
-
(2013)
Nat Rev Immunol
, vol.13
, pp. 755-763
-
-
Ahrens, E.T.1
Bulte, J.W.2
-
84
-
-
84859152270
-
Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat
-
Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012;6:2656-64
-
(2012)
ACS Nano
, vol.6
, pp. 2656-2664
-
-
Mahmoudi, M.1
Serpooshan, V.2
-
85
-
-
33947145111
-
Development of magnetically targeted drug delivery system using superconducting magnet
-
Takeda S, Mishima F, Fujimoto S, et al. Development of magnetically targeted drug delivery system using superconducting magnet. J Magn Magn Mater 2007;311:367-71
-
(2007)
J Magn Magn Mater
, vol.311
, pp. 367-371
-
-
Takeda, S.1
Mishima, F.2
Fujimoto, S.3
-
86
-
-
77958614390
-
Degradability of superparamagnetic nanoparticles in a model of intracellular environment: Follow-up of magnetic, structural and chemical properties
-
Levy M, Lagarde F, Maraloiu VA, et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 2010;21:395103
-
(2010)
Nanotechnology
, vol.21
, pp. 395103
-
-
Levy, M.1
Lagarde, F.2
Maraloiu, V.A.3
-
87
-
-
80053313445
-
The evolution of the protein corona around nanoparticles: A test study
-
Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 2011;5:7503-9
-
(2011)
ACS Nano
, vol.5
, pp. 7503-7509
-
-
Lundqvist, M.1
Stigler, J.2
Cedervall, T.3
-
88
-
-
84859127813
-
Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: Impact on macrophage uptake
-
Lartigue L, Wilhelm C, Servais J, et al. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 2012;6:2665-78
-
(2012)
ACS Nano
, vol.6
, pp. 2665-2678
-
-
Lartigue, L.1
Wilhelm, C.2
Servais, J.3
-
89
-
-
79953024840
-
Long term in vivo biotransformation of iron oxide nanoparticles
-
Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 2011;32:3988-99
-
(2011)
Biomaterials
, vol.32
, pp. 3988-3999
-
-
Levy, M.1
Luciani, N.2
Alloyeau, D.3
-
90
-
-
84878333464
-
Biodegradation of iron oxide nanocubes: High-resolution in situ monitoring
-
Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, et al. Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 2013;7:3939-52
-
(2013)
ACS Nano
, vol.7
, pp. 3939-3952
-
-
Lartigue, L.1
Alloyeau, D.2
Kolosnjaj-Tabi, J.3
|