메뉴 건너뛰기




Volumn 3, Issue , 2009, Pages 285-314

Missing Data

Author keywords

Expectation maximization algorithm; Iterative algorithm; Known data regression method; Missing data; Multiple imputation; NIPALS algorithm; PMP method; Trimmed scores regression method

Indexed keywords


EID: 84882482245     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-044452701-1.00125-3     Document Type: Chapter
Times cited : (11)

References (40)
  • 2
    • 0032563620 scopus 로고    scopus 로고
    • Missing Values in Principal Component Analysis
    • Grung B., Manne R. Missing Values in Principal Component Analysis. Chemom. Intell. Lab. Syst. 1998, 42:125-139.
    • (1998) Chemom. Intell. Lab. Syst. , vol.42 , pp. 125-139
    • Grung, B.1    Manne, R.2
  • 3
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with Missing Data in MSPC: Several Methods, Different Interpretations, Some Examples
    • Arteaga F., Ferrer A. Dealing with Missing Data in MSPC: Several Methods, Different Interpretations, Some Examples. J. Chemom. 2002, 16:408-418.
    • (2002) J. Chemom. , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 4
    • 21244498487 scopus 로고    scopus 로고
    • Inferential Sensor Design in the Presence of Missing Data: A Case Study
    • Lopes V.V., Menezes J.C. Inferential Sensor Design in the Presence of Missing Data: A Case Study. Chemom. Intell. Lab. Syst. 2005, 78:1-10.
    • (2005) Chemom. Intell. Lab. Syst. , vol.78 , pp. 1-10
    • Lopes, V.V.1    Menezes, J.C.2
  • 5
    • 0030296884 scopus 로고    scopus 로고
    • Missing Data Methods in PCA and PLS: Score Calculations with Incomplete Observations
    • Nelson P.P.C., Taylor P.A., MacGregor J.F. Missing Data Methods in PCA and PLS: Score Calculations with Incomplete Observations. Chemom. Intell. Lab. Syst. 1996, 35:45-65.
    • (1996) Chemom. Intell. Lab. Syst. , vol.35 , pp. 45-65
    • Nelson, P.P.C.1    Taylor, P.A.2    MacGregor, J.F.3
  • 6
    • 17744377956 scopus 로고    scopus 로고
    • Latent Variable MPC for Trajectory Tracking in Batch Processes
    • Flores-Cerrillo J., MacGregor J.F. Latent Variable MPC for Trajectory Tracking in Batch Processes. J. Process Control 2005, 15(6):651-663.
    • (2005) J. Process Control , vol.15 , Issue.6 , pp. 651-663
    • Flores-Cerrillo, J.1    MacGregor, J.F.2
  • 8
    • 0029252734 scopus 로고
    • Multivariate SPC Charts for Monitoring Batch Processes
    • Nomikos P., MacGregor J.F. Multivariate SPC Charts for Monitoring Batch Processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 9
    • 0035852412 scopus 로고    scopus 로고
    • Multiple Imputation and Maximum Likelihood Principal Component Analysis of Incomplete Multivariate Data from a Study of the Ageing of Port
    • Ho P., Silva M.C.M., Hogg T.A. Multiple Imputation and Maximum Likelihood Principal Component Analysis of Incomplete Multivariate Data from a Study of the Ageing of Port. Chemom. Intell. Lab. Syst. 2001, 55:1-11.
    • (2001) Chemom. Intell. Lab. Syst. , vol.55 , pp. 1-11
    • Ho, P.1    Silva, M.C.M.2    Hogg, T.A.3
  • 11
    • 33747418958 scopus 로고    scopus 로고
    • Dealing with Gene Expression Missing Data
    • Brás L.P., Menezes J.C. Dealing with Gene Expression Missing Data. IEE Proc. Syst. Biol. 2006, 153(3):105-119.
    • (2006) IEE Proc. Syst. Biol. , vol.153 , Issue.3 , pp. 105-119
    • Brás, L.P.1    Menezes, J.C.2
  • 12
    • 21244435517 scopus 로고    scopus 로고
    • Estimation of Missing Data Using Latent Variable Methods with Auxiliary Information
    • Muteki K., MacGregor J.F., Ueda T. Estimation of Missing Data Using Latent Variable Methods with Auxiliary Information. Chemom. Intell. Lab. Syst. 2005, 78:41-50.
    • (2005) Chemom. Intell. Lab. Syst. , vol.78 , pp. 41-50
    • Muteki, K.1    MacGregor, J.F.2    Ueda, T.3
  • 14
    • 18844378950 scopus 로고    scopus 로고
    • Treatment of Missing Measurements in PCA and PLS Models
    • Ph.D. dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
    • Nelson, P. R. C. Treatment of Missing Measurements in PCA and PLS Models. Ph.D. dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, 2002.
    • (2002)
    • Nelson, P.R.C.1
  • 16
    • 0002626849 scopus 로고
    • Missing Data in Regression Analysis
    • Haitovsky Y. Missing Data in Regression Analysis. J. R. Stat. Soc. B 1968, 30:67-82.
    • (1968) J. R. Stat. Soc. B , vol.30 , pp. 67-82
    • Haitovsky, Y.1
  • 17
    • 0344153904 scopus 로고    scopus 로고
    • Computing the Nearest Correlating Matrix - A Problem from Finance
    • Higham N.J. Computing the Nearest Correlating Matrix - A Problem from Finance. IMA J. Numer. Anal. 2002, 22(3):329-343.
    • (2002) IMA J. Numer. Anal. , vol.22 , Issue.3 , pp. 329-343
    • Higham, N.J.1
  • 18
    • 84970352416 scopus 로고
    • Treatment of Missing Data in Multivariate Analysis
    • Kim J.-O., Curry J. Treatment of Missing Data in Multivariate Analysis. Sociol. Methods Res. 1977, 6:215-240.
    • (1977) Sociol. Methods Res. , vol.6 , pp. 215-240
    • Kim, J.-O.1    Curry, J.2
  • 19
    • 0001342385 scopus 로고
    • A Method of Estimation of Missing Values in Multivariate Data Suitable for Use with an Electronic Computer
    • Buck S.F. A Method of Estimation of Missing Values in Multivariate Data Suitable for Use with an Electronic Computer. J. R. Stat. Soc. B 1960, 22:302-306.
    • (1960) J. R. Stat. Soc. B , vol.22 , pp. 302-306
    • Buck, S.F.1
  • 21
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion)
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion). J. R. Stat. Soc. B. 1977, 39:1-38.
    • (1977) J. R. Stat. Soc. B. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 22
    • 0002210265 scopus 로고
    • On the Convergence Properties of the EM Algorithm
    • Wu C.F.J. On the Convergence Properties of the EM Algorithm. Ann. Stat. 1983, 11:95-103.
    • (1983) Ann. Stat. , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 24
    • 13344271360 scopus 로고
    • The Use of Special Matrix Operations in Statistical Calculus
    • Research Bulletin RB-64-51, Educational Testing Service, Princeton, NJ
    • Beaton, A. E. The Use of Special Matrix Operations in Statistical Calculus; Research Bulletin RB-64-51, Educational Testing Service, Princeton, NJ, 1964.
    • (1964)
    • Beaton, A.E.1
  • 26
    • 84950758368 scopus 로고
    • The Calculation of Posterior Distribution by Data Augmentation (with Discussion)
    • Tanner M.A., Wong W.H. The Calculation of Posterior Distribution by Data Augmentation (with Discussion). J. Am. Stat. Assoc. 1987, 82:528-550.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 27
    • 0001098205 scopus 로고
    • Estimation of Principal Components and Related Models by Iterative Least Squares
    • Academic Press, New York, P.R. Krishnaiah (Ed.)
    • Wold H. Estimation of Principal Components and Related Models by Iterative Least Squares. Multivariate Analysis 1966, 391-420. Academic Press, New York. P.R. Krishnaiah (Ed.).
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 28
    • 11144325691 scopus 로고
    • Partial Least-Squares Regression: A Tutorial
    • Geladi P., Kowalski B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185:1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 31
    • 84984344482 scopus 로고
    • A PLS Kernel Algorithm for Data Sets with Many Variables and Fewer Objects. Part II: Cross-Validation, Missing Data and Examples
    • Rannar S., Geladi P., Lindgren F., Wold S. A PLS Kernel Algorithm for Data Sets with Many Variables and Fewer Objects. Part II: Cross-Validation, Missing Data and Examples. J. Chemom. 1994, 9:459-470.
    • (1994) J. Chemom. , vol.9 , pp. 459-470
    • Rannar, S.1    Geladi, P.2    Lindgren, F.3    Wold, S.4
  • 32
    • 84882555950 scopus 로고    scopus 로고
    • StatLib, Data, Software and News from the Statistics Community, (last accessed 12 June)
    • StatLib, Data, Software and News from the Statistics Community, (last accessed 12 June, 2008). http://lib.stat.cmu.edu.
    • (2008)
  • 34
    • 84882500870 scopus 로고    scopus 로고
    • SAS Institute Inc. SAS/STAT ® 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008
    • SAS Institute Inc. SAS/STAT ® 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008.
  • 35
    • 33644535120 scopus 로고    scopus 로고
    • Framework for Regression-Based Missing Data Imputation Methods in On-Line MSPC
    • Arteaga F., Ferrer A. Framework for Regression-Based Missing Data Imputation Methods in On-Line MSPC. J. Chemom. 2005, 19(8):439-447.
    • (2005) J. Chemom. , vol.19 , Issue.8 , pp. 439-447
    • Arteaga, F.1    Ferrer, A.2
  • 37
    • 33750734428 scopus 로고    scopus 로고
    • Comparison of Different Predictive Models for Nutrient Estimation in a Sequencing Batch Reactor for Wastewater Treatment
    • Aguado D., Ferrer A., Seco A., Ferrer J. Comparison of Different Predictive Models for Nutrient Estimation in a Sequencing Batch Reactor for Wastewater Treatment. Chemom. Intell. Lab. Syst. 2006, 84:75-81.
    • (2006) Chemom. Intell. Lab. Syst. , vol.84 , pp. 75-81
    • Aguado, D.1    Ferrer, A.2    Seco, A.3    Ferrer, J.4
  • 38
    • 55349120836 scopus 로고    scopus 로고
    • Bilinear Modelling of Batch Processes. Part II: A Comparison of PLS Soft-Sensors
    • Camacho J., Picó J., Ferrer A. Bilinear Modelling of Batch Processes. Part II: A Comparison of PLS Soft-Sensors. J. Chemom. 2008, 22:533-547.
    • (2008) J. Chemom. , vol.22 , pp. 533-547
    • Camacho, J.1    Picó, J.2    Ferrer, A.3
  • 39
    • 30144433168 scopus 로고    scopus 로고
    • The Impact of Missing Measurements on PCA and PLS Prediction and Monitoring Application
    • Nelson P.P.C., MacGregor J.F., Taylor P.A. The Impact of Missing Measurements on PCA and PLS Prediction and Monitoring Application. Chemom. Intell. Lab. Syst. 2006, 80:1-12.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , pp. 1-12
    • Nelson, P.P.C.1    MacGregor, J.F.2    Taylor, P.A.3
  • 40
    • 23044525261 scopus 로고    scopus 로고
    • Multiple Imputation in Practice: Comparison of Software Packages for Regression Models with Missing Variables
    • Horton N.J., Lipsitz S.R. Multiple Imputation in Practice: Comparison of Software Packages for Regression Models with Missing Variables. Am. Stat. 2001, 55(3):244-254.
    • (2001) Am. Stat. , vol.55 , Issue.3 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.