메뉴 건너뛰기




Volumn 120, Issue , 2013, Pages 106-115

Comparison of five iterative imputation methods for multivariate classification

Author keywords

Classification criterion; Covariance criterion; Iterative imputation; Multivariate imputation

Indexed keywords

ACCURACY; ARTICLE; CLASSIFICATION ALGORITHM; CORRELATION ANALYSIS; COVARIANCE; GENERAL ITERATIVE PRINCIPAL COMPONENT IMPUTATION METHOD; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; MULTIPLE IMPUTATION BY CHAINED EQUATION; MULTIVARIATE ANALYSIS; PRIORITY JOURNAL; PROBABILITY; REGRESSION ANALYSIS; REGULARIZED EXPECTATION MAXIMIZATION WITH MULTIPLE RIDGE REGRESSION METHOD; REGULARIZED EXPECTATION MAXIMIZATION WITH TRUNCATED TOTAL LEAST SQUARE METHOD; SIMULATION; SINGULAR VALUE DECOMPOSITION IMPUTATION METHOD; STATISTICAL DISTRIBUTION; STATISTICAL MODEL;

EID: 84871055543     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2012.11.010     Document Type: Article
Times cited : (49)

References (37)
  • 3
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate 2001, 14:853-871.
    • (2001) Journal of Climate , vol.14 , pp. 853-871
    • Schneider, T.1
  • 6
    • 77953996246 scopus 로고    scopus 로고
    • An efficient nonlinear programming strategy for PCA models with incomplete data sets
    • Lopez-Negrete R., García-Muñoz S., Biegler L.T. An efficient nonlinear programming strategy for PCA models with incomplete data sets. Journal of Chemometrics 2010, 24:301-311.
    • (2010) Journal of Chemometrics , vol.24 , pp. 301-311
    • Lopez-Negrete, R.1    García-Muñoz, S.2    Biegler, L.T.3
  • 8
    • 84863778202 scopus 로고    scopus 로고
    • Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects
    • Camacho J., Ferrer A. Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics 2012, 26:361-373.
    • (2012) Journal of Chemometrics , vol.26 , pp. 361-373
    • Camacho, J.1    Ferrer, A.2
  • 9
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in MSPC: several methods, different interpretations, some examples
    • Arteaga F., Ferrer A. Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics 2002, 16:408-418.
    • (2002) Journal of Chemometrics , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 10
    • 0036712286 scopus 로고    scopus 로고
    • Exploratory analysis of data sets with missing elements and outliers
    • Smolinski A., Walczak B., Einax J.W. Exploratory analysis of data sets with missing elements and outliers. Chemosphere 2002, 49:233-245.
    • (2002) Chemosphere , vol.49 , pp. 233-245
    • Smolinski, A.1    Walczak, B.2    Einax, J.W.3
  • 11
    • 33644535120 scopus 로고    scopus 로고
    • Framework for regression-based missing data imputation methods in on-line MSPC
    • Arteaga F., Ferrer A. Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics 2005, 19:439-447.
    • (2005) Journal of Chemometrics , vol.19 , pp. 439-447
    • Arteaga, F.1    Ferrer, A.2
  • 13
    • 0029473945 scopus 로고
    • Imputation techniques in regression analysis: looking closely at their implementation
    • Bello A.L. Imputation techniques in regression analysis: looking closely at their implementation. Computational Statistics & Data Analysis 1995, 20:45-57.
    • (1995) Computational Statistics & Data Analysis , vol.20 , pp. 45-57
    • Bello, A.L.1
  • 14
    • 0009306672 scopus 로고
    • Choosing among imputation techniques for incomplete multivariate data - a simulation study
    • Bello A.L. Choosing among imputation techniques for incomplete multivariate data - a simulation study. Communications in Statistics A Theory 1993, 22:853-877.
    • (1993) Communications in Statistics A Theory , vol.22 , pp. 853-877
    • Bello, A.L.1
  • 16
    • 78650554266 scopus 로고    scopus 로고
    • Biological impact of missing-value imputation on downstream analyses of gene expression profiles
    • Oh S., Kang D.D., Brock G.N., Tseng G.C. Biological impact of missing-value imputation on downstream analyses of gene expression profiles. Bioinformatics 2011, 27:78-86.
    • (2011) Bioinformatics , vol.27 , pp. 78-86
    • Oh, S.1    Kang, D.D.2    Brock, G.N.3    Tseng, G.C.4
  • 18
    • 49649098733 scopus 로고    scopus 로고
    • Impact of imputation of missing values on classification error for discrete data
    • Farhangfar A., Kurgan L., Dy J. Impact of imputation of missing values on classification error for discrete data. Pattern Recognition 2008, 41:3692-3705.
    • (2008) Pattern Recognition , vol.41 , pp. 3692-3705
    • Farhangfar, A.1    Kurgan, L.2    Dy, J.3
  • 23
    • 84950631241 scopus 로고
    • Treatment of missing values in discriminant analysis. 1. Sampling experiment
    • Chan L.S., Dunn O.J. Treatment of missing values in discriminant analysis. 1. Sampling experiment. Journal of the American Statistical Association 1972, 67:473-477.
    • (1972) Journal of the American Statistical Association , vol.67 , pp. 473-477
    • Chan, L.S.1    Dunn, O.J.2
  • 24
    • 0038213576 scopus 로고
    • Missing value imputation in multivariate data using the singular value decomposition of a matrix
    • Krzanowski W.J. Missing value imputation in multivariate data using the singular value decomposition of a matrix. Biometrical Letters 1988, 25:31-39.
    • (1988) Biometrical Letters , vol.25 , pp. 31-39
    • Krzanowski, W.J.1
  • 25
    • 0023526237 scopus 로고
    • Cross-validation in principal component analysis
    • Krzanowski W.J. Cross-validation in principal component analysis. Biometrics 1987, 43:575-584.
    • (1987) Biometrics , vol.43 , pp. 575-584
    • Krzanowski, W.J.1
  • 26
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White I.R., Royston P., Wood A.M. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 2011, 30:377-399.
    • (2011) Statistics in Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 27
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation
    • Lee K.J., Carlin J.B. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology 2010, 171:624-632.
    • (2010) American Journal of Epidemiology , vol.171 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 32
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • Bensmail H., Celeux G. Regularized Gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association 1996, 91:1743-1748.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 33
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 34
    • 21344489373 scopus 로고
    • Error rates in quadratic discrimination with constraints on the covariance matrices
    • Flury B.W., Schmid M.J., Narayanan A. Error rates in quadratic discrimination with constraints on the covariance matrices. Journal of Classification 1994, 11:101-120.
    • (1994) Journal of Classification , vol.11 , pp. 101-120
    • Flury, B.W.1    Schmid, M.J.2    Narayanan, A.3
  • 35
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Leray P., Gallinari P. Feature selection with neural networks. Behaviormetrika 1998, 26:145-166.
    • (1998) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.