메뉴 건너뛰기




Volumn 95, Issue 2, 2011, Pages 198-212

An efficient approach to semantic segmentation

Author keywords

Fisher kernel; Image segmentation; Object recognition; PASCAL VOC; Pattern recognition

Indexed keywords

APPEARANCE MODELS; BOUNDING BOX; COMPUTATIONAL COSTS; CONFERENCE PAPERS; DATA SETS; DECOUPLED SYSTEM; EXTENDED VERSIONS; FISHER KERNELS; GLOBAL CONSISTENCY; IMAGE CLASSIFIERS; JOINT ESTIMATION; LABELED DATA; LOCAL CONSISTENCY; MODEL PARAMETERS; OBJECT CLASS; PASCAL VOC; PERFORMANCE APPROACH; PRE-DEFINED SEMANTICS; PROBABILISTIC FRAMEWORK; SEMANTIC SEGMENTATION; SIMPLE APPROACH; STATE-OF-THE-ART PERFORMANCE; TEST TIME; THREE COMPONENT; TRAINING TIME;

EID: 80052660275     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-010-0344-8     Document Type: Article
Times cited : (84)

References (33)
  • 1
    • 33845567121 scopus 로고    scopus 로고
    • Shape-guided object segmentation
    • Borenstein, E., & Malik, J. (2006). Shape-guided object segmentation. In CVPR, 2006
    • (2006) CVPR, 2006
    • Borenstein, E.1    Malik, J.2
  • 2
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
    • Cao, L., & Fei-Fei, L. (2007). Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In ICCV, 2007.
    • (2007) ICCV, 2007
    • Cao, L.1    Fei-Fei, L.2
  • 9
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • He, X., Zemel, R., & Nán, M. C. P. (2004). Multiscale conditional random fields for image labeling. In CVPR, 2004.
    • (2004) CVPR, 2004
    • He, X.1
  • 10
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • Jaakkola, T., & Haussler, D. (1999). Exploiting generative models in discriminative classifiers. In NIPS, 1999.
    • (1999) NIPS, 1999
    • Jaakkola, T.1    Haussler, D.2
  • 13
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • Kumar, S., & Hebert, M. (2005). A hierarchical field framework for unified context-based classification. In ICCV, 2005.
    • (2005) ICCV, 2005
    • Kumar, S.1    Hebert, M.2
  • 14
    • 67650257982 scopus 로고    scopus 로고
    • Category level object segmentation-learning to segment objects with latent aspect models
    • Larlus, D., & Jurie, F. (2007). Category level object segmentation-learning to segment objects with latent aspect models. In VISAPP (Vol. 2).
    • (2007) VISAPP , vol.2
    • Larlus, D.1    Jurie, F.2
  • 15
    • 78049276138 scopus 로고    scopus 로고
    • Category level object segmentation by combining bag-of-words models with Dirichlet processes and random fields
    • Larlus, D., Verbeek, J., & Jurie, F. (2009). Category level object segmentation by combining bag-of-words models with Dirichlet processes and random fields. In IJCV, 2009.
    • (2009) IJCV, 2009
    • Larlus, D.1    Verbeek, J.2    Jurie, F.3
  • 16
    • 70450186103 scopus 로고    scopus 로고
    • An empirical Bayes approach to contextual region classification
    • Lazebnik, S. (2009). An empirical Bayes approach to contextual region classification. In CVPR, 2009.
    • (2009) CVPR, 2009
    • Lazebnik, S.1
  • 18
    • 70450219021 scopus 로고    scopus 로고
    • Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
    • Li, L. J., Socher, R., & Fei-Fei, L. (2009). Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In CVPR, 2009.
    • (2009) CVPR, 2009
    • Li, L.J.1    Socher, R.2    Fei-Fei, L.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 10.1023/B:VISI.0000029664.99615.94
    • D. Lowe 2004 Distinctive image features from scale-invariant keypoints International Journal of Compute Vision 60 2 91 110 10.1023/B:VISI.0000029664. 99615.94
    • (2004) International Journal of Compute Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • Maji, S., Berg, A., & Malik, J. (2008). Classification using intersection kernel support vector machines is efficient. In CVPR, 2008.
    • (2008) CVPR, 2008
    • Maji, S.1    Berg, A.2    Malik, J.3
  • 21
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR, 2007
    • Perronnin, F.1    Dance, C.2
  • 23
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: interactive foreground extraction using iterated graph cuts. In SIGRAPH, 2004.
    • (2004) SIGRAPH, 2004
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 25
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV, 2006.
    • (2006) ECCV, 2006
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 26
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • Sivic, J., & Zisserman, A. (2003). Video google: a text retrieval approach to object matching in videos. In ICCV (Vol. 2, pp. 1470-1477).
    • (2003) ICCV , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 27
    • 70450153793 scopus 로고    scopus 로고
    • Quick shift and kernel methods for mode seeking
    • Vedaldi, A., & Soatto, S. (2008). Quick shift and kernel methods for mode seeking. In ECCV, 2008.
    • (2008) ECCV, 2008
    • Vedaldi, A.1    Soatto, S.2
  • 29
    • 34948814611 scopus 로고    scopus 로고
    • Region classification with Markov field aspects models
    • Verbeek, J., & Triggs, B. (2007a). Region classification with Markov field aspects models. In CVPR, 2007.
    • (2007) CVPR, 2007
    • Verbeek, J.1    Triggs, B.2
  • 30
    • 51949084868 scopus 로고    scopus 로고
    • Scene segmentation with crfs learned from partially labeled images
    • Verbeek, J., & Triggs, B. (2007b). Scene segmentation with crfs learned from partially labeled images. In NIPS, 2007.
    • (2007) NIPS, 2007
    • Verbeek, J.1    Triggs, B.2
  • 31
    • 77953194802 scopus 로고    scopus 로고
    • Learning image similarity from Flickr groups using stochastic intersection kernel machines
    • Wang, G., Hoiem, G., & Forsyth, D. (2009). Learning image similarity from Flickr groups using stochastic intersection kernel machines. In ICCV, 2009.
    • (2009) ICCV, 2009
    • Wang, G.1    Hoiem, G.2    Forsyth, D.3
  • 32
    • 33745948591 scopus 로고    scopus 로고
    • Locus: Learning object classes with unsupervised segmentation
    • Winn, J., & Jojic, N. (2005). Locus: Learning object classes with unsupervised segmentation. In ICCV, 2005.
    • (2005) ICCV, 2005
    • Winn, J.1    Jojic, N.2
  • 33
    • 34948817675 scopus 로고    scopus 로고
    • Multiple class segmentation using a unified framework over mean-shift patches
    • Yang, L., Meer, P., & Foran, D. (2007). Multiple class segmentation using a unified framework over mean-shift patches. In CVPR, 2007.
    • (2007) CVPR, 2007
    • Yang, L.1    Meer, P.2    Foran, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.