메뉴 건너뛰기




Volumn 46, Issue 5, 2013, Pages 869-875

Semi-supervised clinical text classification with Laplacian SVMs: An application to cancer case management

Author keywords

Graph Laplacian; Natural language processing; Semi supervised learning; Support vector machine

Indexed keywords

CLINICAL TEXT CLASSIFICATIONS; GRAPH LAPLACIAN; LABELED AND UNLABELED DATA; NATURAL LANGUAGE PROCESSING; POSITIVE PREDICTIVE VALUES; SEMI-SUPERVISED LEARNING; SUPERVISED MACHINE LEARNING; SUPPORT VECTOR MACHINE (SVMS);

EID: 84883822654     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2013.06.014     Document Type: Article
Times cited : (93)

References (32)
  • 1
    • 70349467729 scopus 로고    scopus 로고
    • What can natural language processing do for clinical decision support?
    • Demner-Fushman D., Chapman W.W., McDonald C.J. What can natural language processing do for clinical decision support?. J Biomed Inform 2009, 42:760-772.
    • (2009) J Biomed Inform , vol.42 , pp. 760-772
    • Demner-Fushman, D.1    Chapman, W.W.2    McDonald, C.J.3
  • 2
    • 79956327715 scopus 로고    scopus 로고
    • Using electronic health records to drive discovery in disease genomics
    • Kohane I.S. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 2011, 12:417-428.
    • (2011) Nat Rev Genet , vol.12 , pp. 417-428
    • Kohane, I.S.1
  • 3
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: from transductive to semi-supervised learning
    • In ICML
    • Sindhwani V, Niyogi P. Beyond the point cloud: from transductive to semi-supervised learning. In: In ICML; 2005. p. 824-31.
    • (2005) , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2
  • 4
    • 33750345142 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation
    • Chapelle O, Zien A. Semi-supervised classification by low density separation; 2005.
    • (2005)
    • Chapelle, O.1    Zien, A.2
  • 5
    • 77954749643 scopus 로고    scopus 로고
    • Characteristics and predictors of missed opportunities in lung cancer diagnosis: an electronic health record-based study
    • Singh H., Hirani K., Kadiyala H., et al. Characteristics and predictors of missed opportunities in lung cancer diagnosis: an electronic health record-based study. J Clin Oncol 2010, 28:3307-3315.
    • (2010) J Clin Oncol , vol.28 , pp. 3307-3315
    • Singh, H.1    Hirani, K.2    Kadiyala, H.3
  • 6
    • 84883823939 scopus 로고    scopus 로고
    • A natural language processing-based clinical decision support tool improves the management of pulmonary nodules and liver masses
    • Radiological society of North America annual meeting, Chicago; 2011. <>
    • Garla V, Steinhardt S, Levin F, et al. A natural language processing-based clinical decision support tool improves the management of pulmonary nodules and liver masses. In: Radiological society of North America annual meeting, Chicago; 2011. <> http://rsna2011.rsna.org/search/event_display.cfm?am_id=2&em_id=11013797&printmode=Y&autoprint=N.
    • Garla, V.1    Steinhardt, S.2    Levin, F.3
  • 7
    • 33749252873 scopus 로고    scopus 로고
    • MIT Press, Cambridge (MA), O. Chapelle, B. Schölkopf, A. Zien (Eds.)
    • Semi-supervised learning 2006, MIT Press, Cambridge (MA),
    • (2006) Semi-supervised learning
  • 8
    • 33750733400 scopus 로고    scopus 로고
    • Spectral methods for dimensionality reduction
    • MIT Press, Cambridge (MA), O. Chapelle (Ed.)
    • Saul L., Weinberger K., Sha F., et al. Spectral methods for dimensionality reduction. Semi-supervised learning 2006, MIT Press, Cambridge (MA). O. Chapelle (Ed.).
    • (2006) Semi-supervised learning
    • Saul, L.1    Weinberger, K.2    Sha, F.3
  • 9
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • Shao J.-D., Rong G., Lee J.M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chemometr Intell Lab Syst 2009, 96:75-83.
    • (2009) Chemometr Intell Lab Syst , vol.96 , pp. 75-83
    • Shao, J.-D.1    Rong, G.2    Lee, J.M.3
  • 10
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • Springer, J. Shawe-Taylor, Y. Singer (Eds.)
    • Belkin M., Matveeva I., Niyogi P. Regularization and semi-supervised learning on large graphs. COLT 2004, 624-638. Springer. J. Shawe-Taylor, Y. Singer (Eds.).
    • (2004) COLT , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 11
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 2006, 7:2399-2434.
    • (2006) J Mach Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 12
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • IN ICML;
    • Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. In: IN ICML; 2003. p. 912-9.
    • (2003) , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 13
    • 84883782485 scopus 로고    scopus 로고
    • American College of Radiology. ACR practice guideline for communication of diagnostic imaging findings. [accessed 30.04.12].
    • American College of Radiology. ACR practice guideline for communication of diagnostic imaging findings. <> [accessed 30.04.12]. http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/dx/comm_diag_rad.aspx.
  • 14
    • 84856649934 scopus 로고    scopus 로고
    • Using nurse navigation to improve timeliness of lung cancer care at a veterans hospital
    • Hunnibell L.S., Rose M.G., Connery D.M., et al. Using nurse navigation to improve timeliness of lung cancer care at a veterans hospital. Clin J Oncol Nurs 2012, 16:29-36.
    • (2012) Clin J Oncol Nurs , vol.16 , pp. 29-36
    • Hunnibell, L.S.1    Rose, M.G.2    Connery, D.M.3
  • 15
    • 67649352146 scopus 로고    scopus 로고
    • NLP-based identification of pneumonia cases from free-text radiological reports
    • Elkin PL, Froehling D, Wahner-Roedler D, et al. NLP-based identification of pneumonia cases from free-text radiological reports. In: AMIA annu symp proc; 2008. p. 172-6.
    • (2008) AMIA annu symp proc , pp. 172-176
    • Elkin, P.L.1    Froehling, D.2    Wahner-Roedler, D.3
  • 16
    • 23244449654 scopus 로고    scopus 로고
    • Extracting information on pneumonia in infants using natural language processing of radiology reports
    • Mendonça E.A., Haas J., Shagina L., et al. Extracting information on pneumonia in infants using natural language processing of radiology reports. J Biomed Inform 2005, 38:314-321.
    • (2005) J Biomed Inform , vol.38 , pp. 314-321
    • Mendonça, E.A.1    Haas, J.2    Shagina, L.3
  • 17
    • 84872259831 scopus 로고    scopus 로고
    • Named entity recognition of follow-up and time information in 20,000 radiology reports
    • [published online first 06.07.12].doi:10.1136/amiajnl-2012-000812
    • Xu Y, Tsujii J, Chang EI-C. Named entity recognition of follow-up and time information in 20,000 radiology reports. J Am Med Inf Assoc. http://dx.doi.org/10.1136/amiajnl-2012-000812 [published online first 06.07.12]. doi:10.1136/amiajnl-2012-000812.
    • J Am Med Inf Assoc
    • Xu, Y.1    Tsujii, J.2    Chang, E.I.-C.3
  • 18
    • 12344287992 scopus 로고    scopus 로고
    • Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study
    • Dreyer K.J., Kalra M.K., Maher M.M., et al. Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study. Radiology 2005, 234:323-329.
    • (2005) Radiology , vol.234 , pp. 323-329
    • Dreyer, K.J.1    Kalra, M.K.2    Maher, M.M.3
  • 19
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova G.K., Masanz J.J., Ogren P.V., et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010, 17:507-513.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 20
    • 80053230002 scopus 로고    scopus 로고
    • The Yale cTAKES extensions for document classification: architecture and application
    • Garla V., Re V.L., Dorey-Stein Z., et al. The Yale cTAKES extensions for document classification: architecture and application. J Am Med Inform Assoc 2011, 18:614-620.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 614-620
    • Garla, V.1    Re, V.L.2    Dorey-Stein, Z.3
  • 21
    • 84869638704 scopus 로고    scopus 로고
    • National Library of Medicine
    • UMLS® reference manual - NCBI bookshelf. 2009. <> [accessed 30.03.11].
    • National Library of Medicine. UMLS® reference manual - NCBI bookshelf. 2009. <> [accessed 30.03.11]. http://www.ncbi.nlm.nih.gov/books/NBK9676/.
  • 22
  • 23
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Melacci S., Belkin M. Laplacian support vector machines trained in the primal. J Mach Learn Res 2011, 12:1149-1184.
    • (2011) J Mach Learn Res , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 24
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • In: Proceedings of the sixteenth international conference on machine learning. Morgan Kaufmann Publishers Inc.
    • Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the sixteenth international conference on machine learning. Morgan Kaufmann Publishers Inc.; 1999. p. 200-9.
    • (1999) , pp. 200-209
    • Joachims, T.1
  • 25
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • Joachims T. Transductive learning via spectral graph partitioning. In: In ICML; 2003. p. 290-7.
    • (2003) In ICML , pp. 290-297
    • Joachims, T.1
  • 26
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc 2009, 16:561-570.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 561-570
    • Uzuner, O.1
  • 27
    • 85031008452 scopus 로고    scopus 로고
    • A shared task involving multi-label classification of clinical free text
    • ACL, editor. Proceedings of ACL BioNLP, Prague
    • Pestian JP, Brew C, Matykiewicz P, et al. A shared task involving multi-label classification of clinical free text. In: ACL, editor. Proceedings of ACL BioNLP, Prague; 2007.
    • (2007)
    • Pestian, J.P.1    Brew, C.2    Matykiewicz, P.3
  • 28
    • 84858288593 scopus 로고    scopus 로고
    • Applying active learning to assertion classification of concepts in clinical text
    • Chen Y., Mani S., Xu H. Applying active learning to assertion classification of concepts in clinical text. J Biomed Inform 2012, 45:265-272.
    • (2012) J Biomed Inform , vol.45 , pp. 265-272
    • Chen, Y.1    Mani, S.2    Xu, H.3
  • 29
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin-Madison; 2009.
    • Settles B. Active learning literature survey. University of Wisconsin-Madison; 2009.
    • Settles, B.1
  • 31
    • 77953421580 scopus 로고    scopus 로고
    • The NCCN clinical practice guidelines in oncology. Lung Cancer Screening, Version 1. <> [accessed 27.02.12].
    • National Comprehensive Cancer Network. The NCCN clinical practice guidelines in oncology. Lung Cancer Screening, Version 1. <> [accessed 27.02.12]. http://www.nccn.org/professionals/physician_gls/pdf/lung_screening.pdf.
    • National Comprehensive Cancer Network
  • 32
    • 79953171086 scopus 로고    scopus 로고
    • Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection
    • Kanwal F., Hoang T., Kramer J.R., et al. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. Gastroenterology 2011, 140(1182-1188):e1.
    • (2011) Gastroenterology , vol.140 , Issue.1182-1188
    • Kanwal, F.1    Hoang, T.2    Kramer, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.