메뉴 건너뛰기




Volumn 145, Issue , 2015, Pages 72-83

Phase division and process monitoring for multiphase batch processes with transitions

Author keywords

Multiphase batch process; Phase division; Process monitoring; Transition

Indexed keywords

ARTICLE; BATCH PROCESS; CONTROLLED STUDY; CORRELATION ANALYSIS; FERMENTATION; INTERMETHOD COMPARISON; KERNEL METHOD; MATHEMATICAL COMPUTING; MEASUREMENT REPEATABILITY; NONLINEAR SYSTEM; ONLINE MONITORING; PHASE DIVISION; PHASE TRANSITION; PHYSICAL PHENOMENA; PRIORITY JOURNAL; PROCESS MONITORING; STEADY STATE; TWO STEP FEATURE VECTOR SELECTION BASED KERNEL VARIABLE CORRELATION ANALYSIS;

EID: 84929461110     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.04.007     Document Type: Article
Times cited : (26)

References (39)
  • 1
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component analysis
    • Kosanovich K.A., Dahl K.S., Piovoso M.J. Improved process understanding using multiway principal component analysis. Ind. Eng. Chem. Res. 1996, 35:138-146.
    • (1996) Ind. Eng. Chem. Res. , vol.35 , pp. 138-146
    • Kosanovich, K.A.1    Dahl, K.S.2    Piovoso, M.J.3
  • 4
    • 0000339654 scopus 로고    scopus 로고
    • Multivariate modeling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares
    • Westerhuis J.A., Coenegracht P.M.J. Multivariate modeling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares. J. Chemometr. 1997, 11:379-392.
    • (1997) J. Chemometr. , vol.11 , pp. 379-392
    • Westerhuis, J.A.1    Coenegracht, P.M.J.2
  • 5
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise B.M., Gallagher N.B., Butler S.W., White D.D., Barna G.G. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemom. 1999, 13:379-396.
    • (1999) J. Chemom. , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White, D.D.4    Barna, G.G.5
  • 6
    • 0030387633 scopus 로고    scopus 로고
    • Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis
    • Nomikos P. Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis. ISA Trans. 1996, 35:259-266.
    • (1996) ISA Trans. , vol.35 , pp. 259-266
    • Nomikos, P.1
  • 7
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. Am. Inst. Chem. Eng. J. 1994, 40:1361-1375.
    • (1994) Am. Inst. Chem. Eng. J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 8
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 9
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis J.A., Kourti T., MacGregor J.F. Comparing alternative approaches for multivariate statistical analysis of batch process data. J. Chemom. 1999, 13:297-413.
    • (1999) J. Chemom. , vol.13 , pp. 297-413
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 11
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • Chen J., Liu K.-C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem. Eng. Sci. 2002, 57:63-75.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 63-75
    • Chen, J.1    Liu, K.-C.2
  • 12
    • 0141566609 scopus 로고    scopus 로고
    • Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis
    • Undey C., Ertunc S., Cinar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Ind. Eng. Chem. Res. 2003, 42:4645-4658.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4645-4658
    • Undey, C.1    Ertunc, S.2    Cinar, A.3
  • 13
    • 0037282647 scopus 로고    scopus 로고
    • Multivariate dynamic data modeling for analysis and statistical process control of batch processes. Start-ups and grade transitions
    • Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes. Start-ups and grade transitions. J. Chemom. 2003, 17:93-109.
    • (2003) J. Chemom. , vol.17 , pp. 93-109
    • Kourti, T.1
  • 14
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • Albazzaz H., Wang X.Z. Statistical process control charts for batch operations based on independent component analysis. Ind. Eng. Chem. Res. 2004, 43:6731-6741.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 6731-6741
    • Albazzaz, H.1    Wang, X.Z.2
  • 15
    • 33644481620 scopus 로고    scopus 로고
    • An improved adaptive multi-way principal component analysis for monitoring streptomycin fermentation process
    • He N., Wang S.Q., Xie L. An improved adaptive multi-way principal component analysis for monitoring streptomycin fermentation process. Chin. J. Chem. Eng. 2004, 12:96-101.
    • (2004) Chin. J. Chem. Eng. , vol.12 , pp. 96-101
    • He, N.1    Wang, S.Q.2    Xie, L.3
  • 16
    • 84865117519 scopus 로고    scopus 로고
    • Online batch process monitoring using a consecutively updated multi-way principal analysis model
    • Lee J.M., Yoo C.K., Lee I.B. Online batch process monitoring using a consecutively updated multi-way principal analysis model. J. Biotechnol. 2004, 108:61-77.
    • (2004) J. Biotechnol. , vol.108 , pp. 61-77
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 17
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Fault detection of batch processes using multiway kernel principal component analysis. Comput. Chem. Eng. 2004, 28:1837-1847.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 18
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind. Eng. Chem. Res. 2009, 48:8585-8594.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 19
    • 1042268071 scopus 로고    scopus 로고
    • A sub-PCA modeling and online monitoring strategy for batch processes
    • Lu N.Y., Gao F.R., Wang F.L. A sub-PCA modeling and online monitoring strategy for batch processes. AIChE J 2004, 50:255-259.
    • (2004) AIChE J , vol.50 , pp. 255-259
    • Lu, N.Y.1    Gao, F.R.2    Wang, F.L.3
  • 20
    • 19844382757 scopus 로고    scopus 로고
    • Stage-based process analysis and quality prediction for batch processes
    • Lu N.Y., Gao F.R. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44:3547-3555.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3547-3555
    • Lu, N.Y.1    Gao, F.R.2
  • 21
    • 33750361533 scopus 로고    scopus 로고
    • Online monitoring of batch processes using multiphase principal component analysis
    • Camacho J., Pico J. Online monitoring of batch processes using multiphase principal component analysis. J. Process Control 2006, 16:1021-1035.
    • (2006) J. Process Control , vol.16 , pp. 1021-1035
    • Camacho, J.1    Pico, J.2
  • 22
    • 33645311553 scopus 로고    scopus 로고
    • Multi-phase principal component analysis for batch processes modeling
    • Camacho J., Pico J. Multi-phase principal component analysis for batch processes modeling. Chemom. Intell. Lab. Syst. 2006, 81:127-136.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , pp. 127-136
    • Camacho, J.1    Pico, J.2
  • 23
    • 57149098240 scopus 로고    scopus 로고
    • Multi-phase analysis framework for handing batch process data
    • Camacho J., Pico J., Ferrer A. Multi-phase analysis framework for handing batch process data. J. Chemom. 2008, 22:632-643.
    • (2008) J. Chemom. , vol.22 , pp. 632-643
    • Camacho, J.1    Pico, J.2    Ferrer, A.3
  • 24
    • 35148823629 scopus 로고    scopus 로고
    • Stage-based soft transition multiple PCA modeling
    • Zhao C.H., Wang F.L., Lu N.Y., Jia M.X. Stage-based soft transition multiple PCA modeling. J. Process Control 2007, 17:728-741.
    • (2007) J. Process Control , vol.17 , pp. 728-741
    • Zhao, C.H.1    Wang, F.L.2    Lu, N.Y.3    Jia, M.X.4
  • 25
    • 64849096132 scopus 로고    scopus 로고
    • Phase and transition based batch process modeling and online monitoring
    • Yao Y., Gao F.R. Phase and transition based batch process modeling and online monitoring. J. Process Control 2009, 19:816-826.
    • (2009) J. Process Control , vol.19 , pp. 816-826
    • Yao, Y.1    Gao, F.R.2
  • 26
    • 84929456940 scopus 로고    scopus 로고
    • Between-phase-based statistical analysis and modeling for transition monitoring in multiphase batch processes
    • Zhao C.H., Gao F.R. Between-phase-based statistical analysis and modeling for transition monitoring in multiphase batch processes. AIChE J 2011, 00:1-15.
    • (2011) AIChE J , vol.0 , pp. 1-15
    • Zhao, C.H.1    Gao, F.R.2
  • 27
    • 79955658669 scopus 로고    scopus 로고
    • A two-step basis vector extraction strategy for multiset variable correlation analysis
    • Zhao C.H., Gao F.R., Niu D.P., Wang F.L. A two-step basis vector extraction strategy for multiset variable correlation analysis. Chemom. Intell. Lab. Syst. 2011, 107:147-154.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 147-154
    • Zhao, C.H.1    Gao, F.R.2    Niu, D.P.3    Wang, F.L.4
  • 28
    • 84875952239 scopus 로고    scopus 로고
    • Modeling and monitoring for handling nonlinear dynamic processes
    • Zhang Y.W., An J.Y., Li Z.M., Wang H. Modeling and monitoring for handling nonlinear dynamic processes. Inf. Sci. 2013, 235:97-105.
    • (2013) Inf. Sci. , vol.235 , pp. 97-105
    • Zhang, Y.W.1    An, J.Y.2    Li, Z.M.3    Wang, H.4
  • 29
    • 84863412240 scopus 로고    scopus 로고
    • Utilizing transition information in online quality prediction of multiphase batch processes
    • Ge Z.Q., Zhao L.P., Yao Y., Song Z.H., Gao F.R. Utilizing transition information in online quality prediction of multiphase batch processes. J. Process Control 2012, 22:599-611.
    • (2012) J. Process Control , vol.22 , pp. 599-611
    • Ge, Z.Q.1    Zhao, L.P.2    Yao, Y.3    Song, Z.H.4    Gao, F.R.5
  • 30
    • 84870255869 scopus 로고    scopus 로고
    • Discriminant diffusion maps analysis: A robust manifold learner for dimensionality reduction and its applications in machine condition monitoring and fault diagnosis
    • Huang Y.X., Zha X.F., Lee Jay, Liu C.L. Discriminant diffusion maps analysis: A robust manifold learner for dimensionality reduction and its applications in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2013, 34:277-297.
    • (2013) Mech. Syst. Signal Process. , vol.34 , pp. 277-297
    • Huang, Y.X.1    Zha, X.F.2    Lee, J.3    Liu, C.L.4
  • 32
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • Lafon S., Lee A.B. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(8):1393-1430.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.8 , pp. 1393-1430
    • Lafon, S.1    Lee, A.B.2
  • 34
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • Baudat G., Anouar F. Feature vector selection and projection using kernels. Neurocomputing 2003, 55:21-38.
    • (2003) Neurocomputing , vol.55 , pp. 21-38
    • Baudat, G.1    Anouar, F.2
  • 35
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A.J., Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10(5):1299-1399.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1399
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.3
  • 38
  • 39
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: penicillin production
    • Birol G., Undey C., Cinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 2002, 26:1553-1565.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Undey, C.2    Cinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.