메뉴 건너뛰기




Volumn 11, Issue 5, 2015, Pages 2187-2198

High-dimensional neural network potentials for organic reactions and an improved training algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; THEORETICAL MODEL; THERMODYNAMICS;

EID: 84929346813     PISSN: 15499618     EISSN: 15499626     Source Type: Journal    
DOI: 10.1021/acs.jctc.5b00211     Document Type: Article
Times cited : (137)

References (97)
  • 1
    • 0004107550 scopus 로고    scopus 로고
    • 7 th ed. Prentice Hall: Boston
    • Levine, I. N. Quantum Chemistry, 7 th ed.; Prentice Hall: Boston, 2013.
    • (2013) Quantum Chemistry
    • Levine, I.N.1
  • 2
    • 18744378855 scopus 로고    scopus 로고
    • Ab initio quantum chemistry: Methodology and applications
    • Friesner, R. A. Ab initio quantum chemistry: Methodology and applications Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6648-6653
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 6648-6653
    • Friesner, R.A.1
  • 4
    • 4444351490 scopus 로고    scopus 로고
    • Empirical force fields for biological macromolecules: Overview and issues
    • Mackerell, A. D. Empirical force fields for biological macromolecules: Overview and issues J. Comput. Chem. 2004, 25, 1584-1604
    • (2004) J. Comput. Chem. , vol.25 , pp. 1584-1604
    • Mackerell, A.D.1
  • 6
    • 84929328883 scopus 로고    scopus 로고
    • Next generation interatomic potentials for condensed systems
    • Handley, C. M.; Behler, J. Next generation interatomic potentials for condensed systems Eur. Phys. J. B 2014, 87, 1-16
    • (2014) Eur. Phys. J. B , vol.87 , pp. 1-16
    • Handley, C.M.1    Behler, J.2
  • 7
    • 0344467292 scopus 로고    scopus 로고
    • Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface
    • Brown, A.; Braams, B. J.; Christoffel, K.; Jin, Z.; Bowman, J. M. Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface J. Chem. Phys. 2003, 119, 8790-8793
    • (2003) J. Chem. Phys. , vol.119 , pp. 8790-8793
    • Brown, A.1    Braams, B.J.2    Christoffel, K.3    Jin, Z.4    Bowman, J.M.5
  • 8
    • 84878571921 scopus 로고    scopus 로고
    • On representing chemical environments
    • Bartók, A. P.; Kondor, R.; Csányi, G. On representing chemical environments Phys. Rev. B 2013, 87, 184115
    • (2013) Phys. Rev. B , vol.87 , pp. 184115
    • Bartók, A.P.1    Kondor, R.2    Csányi, G.3
  • 9
    • 84856512353 scopus 로고    scopus 로고
    • Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
    • Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning Phys. Rev. Lett. 2012, 108, 058301
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Müller, K.-R.3    Von Lilienfeld, O.A.4
  • 10
    • 36449006558 scopus 로고
    • Molecular potential energy surfaces by interpolation
    • Ischtwan, J.; Collins, M. A. Molecular potential energy surfaces by interpolation J. Chem. Phys. 1994, 100, 8080-8088
    • (1994) J. Chem. Phys. , vol.100 , pp. 8080-8088
    • Ischtwan, J.1    Collins, M.A.2
  • 11
    • 11144349549 scopus 로고    scopus 로고
    • First-Principles Theory for the H + CH4 → H2 + CH3 Reaction
    • Wu, T.; Werner, H.-J.; Manthe, U. First-Principles Theory for the H + CH4 → H2 + CH3 Reaction Science 2004, 306, 2227-2229
    • (2004) Science , vol.306 , pp. 2227-2229
    • Wu, T.1    Werner, H.-J.2    Manthe, U.3
  • 12
    • 0001755258 scopus 로고    scopus 로고
    • Ab initio potential energy surface by modified Shepard interpolation: Application to the CH3 + H2 → CH4 + H reaction
    • Takata, T.; Taketsugu, T.; Hirao, K.; Gordon, M. S. Ab initio potential energy surface by modified Shepard interpolation: Application to the CH3 + H2 → CH4 + H reaction J. Chem. Phys. 1998, 109, 4281-4289
    • (1998) J. Chem. Phys. , vol.109 , pp. 4281-4289
    • Takata, T.1    Taketsugu, T.2    Hirao, K.3    Gordon, M.S.4
  • 13
    • 0141450457 scopus 로고    scopus 로고
    • Multi-dimensional potential energy surface determination by modified Shepard interpolation for a molecule-surface reaction: H2 + Pt(111)
    • Crespos, C.; Collins, M. A.; Pijper, E.; Kroes, G. J. Multi-dimensional potential energy surface determination by modified Shepard interpolation for a molecule-surface reaction: H2 + Pt(111) Chem. Phys. Lett. 2003, 376, 566-575
    • (2003) Chem. Phys. Lett. , vol.376 , pp. 566-575
    • Crespos, C.1    Collins, M.A.2    Pijper, E.3    Kroes, G.J.4
  • 14
    • 34248376539 scopus 로고    scopus 로고
    • Interpolating moving least-squares methods for fitting potential energy surfaces: Computing high-density potential energy surface data from low-density ab initio data points
    • Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M. Interpolating moving least-squares methods for fitting potential energy surfaces: Computing high-density potential energy surface data from low-density ab initio data points J. Chem. Phys. 2007, 126, 184108
    • (2007) J. Chem. Phys. , vol.126 , pp. 184108
    • Dawes, R.1    Thompson, D.L.2    Guo, Y.3    Wagner, A.F.4    Minkoff, M.5
  • 15
    • 84882401758 scopus 로고    scopus 로고
    • CO Dimer: New Potential Energy Surface and Rovibrational Calculations
    • Dawes, R.; Wang, X.-G.; Carrington, T., Jr. CO Dimer: New Potential Energy Surface and Rovibrational Calculations J. Phys. Chem. A 2013, 117, 7612-7630
    • (2013) J. Phys. Chem. A , vol.117 , pp. 7612-7630
    • Dawes, R.1    Wang, X.-G.2    Carrington, T.3
  • 17
    • 19644389243 scopus 로고
    • Neural network models of potential energy surfaces
    • Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. Neural network models of potential energy surfaces J. Chem. Phys. 1995, 103, 4129-4137
    • (1995) J. Chem. Phys. , vol.103 , pp. 4129-4137
    • Blank, T.B.1    Brown, S.D.2    Calhoun, A.W.3    Doren, D.J.4
  • 18
    • 33645530442 scopus 로고    scopus 로고
    • Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface
    • Lorenz, S.; Scheffler, M.; Gross, A. Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface Phys. Rev. B 2006, 73, 115431
    • (2006) Phys. Rev. B , vol.73 , pp. 115431
    • Lorenz, S.1    Scheffler, M.2    Gross, A.3
  • 19
    • 39349085778 scopus 로고    scopus 로고
    • Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling
    • Ludwig, J.; Vlachos, D. G. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling J. Chem. Phys. 2007, 127, 154716
    • (2007) J. Chem. Phys. , vol.127 , pp. 154716
    • Ludwig, J.1    Vlachos, D.G.2
  • 20
    • 69449102473 scopus 로고    scopus 로고
    • Fitting sparse multidimensional data with low-dimensional terms
    • Manzhos, S.; Yamashita, K.; Carrington, T., Jr. Fitting sparse multidimensional data with low-dimensional terms Comput. Phys. Commun. 2009, 180, 2002-2012
    • (2009) Comput. Phys. Commun. , vol.180 , pp. 2002-2012
    • Manzhos, S.1    Yamashita, K.2    Carrington, T.3
  • 21
    • 50849098886 scopus 로고    scopus 로고
    • Fingerprints for Spin-Selection Rules in the Interaction Dynamics of O2 at Al(111)
    • Carbogno, C.; Behler, J.; Groß, A.; Reuter, K. Fingerprints for Spin-Selection Rules in the Interaction Dynamics of O2 at Al(111) Phys. Rev. Lett. 2008, 101, 096104
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 096104
    • Carbogno, C.1    Behler, J.2    Groß, A.3    Reuter, K.4
  • 22
    • 41449117960 scopus 로고    scopus 로고
    • Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface
    • Behler, J.; Reuter, K.; Scheffler, M. Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface Phys. Rev. B 2008, 77, 115421
    • (2008) Phys. Rev. B , vol.77 , pp. 115421
    • Behler, J.1    Reuter, K.2    Scheffler, M.3
  • 25
    • 84891834388 scopus 로고    scopus 로고
    • Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks
    • Liu, T.; Fu, B.; Zhang, D. H. Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks Sci. China Chem. 2013, 57, 147-155
    • (2013) Sci. China Chem. , vol.57 , pp. 147-155
    • Liu, T.1    Fu, B.2    Zhang, D.H.3
  • 27
    • 0000433450 scopus 로고    scopus 로고
    • Combining ab initio computations, neural networks, and diffusion Monte Carlo: An efficient method to treat weakly bound molecules
    • Brown, D. F. R.; Gibbs, M. N.; Clary, D. C. Combining ab initio computations, neural networks, and diffusion Monte Carlo: An efficient method to treat weakly bound molecules J. Chem. Phys. 1996, 105, 7597-7604
    • (1996) J. Chem. Phys. , vol.105 , pp. 7597-7604
    • Brown, D.F.R.1    Gibbs, M.N.2    Clary, D.C.3
  • 28
    • 35248841947 scopus 로고    scopus 로고
    • A polarizable high-rank quantum topological electrostatic potential developed using neural networks: Molecular dynamics simulations on the hydrogen fluoride dimer
    • Houlding, S.; Liem, S. Y.; Popelier, P. L. A. A polarizable high-rank quantum topological electrostatic potential developed using neural networks: Molecular dynamics simulations on the hydrogen fluoride dimer Int. J. Quantum Chem. 2007, 107, 2817-2827
    • (2007) Int. J. Quantum Chem. , vol.107 , pp. 2817-2827
    • Houlding, S.1    Liem, S.Y.2    Popelier, P.L.A.3
  • 29
    • 0031555986 scopus 로고    scopus 로고
    • Description of the potential energy surface of the water dimer with an artificial neural network
    • No, K. T.; Chang, B. H.; Kim, S. Y.; Jhon, M. S.; Scheraga, H. A. Description of the potential energy surface of the water dimer with an artificial neural network Chem. Phys. Lett. 1997, 271, 152-156
    • (1997) Chem. Phys. Lett. , vol.271 , pp. 152-156
    • No, K.T.1    Chang, B.H.2    Kim, S.Y.3    Jhon, M.S.4    Scheraga, H.A.5
  • 30
    • 0037163980 scopus 로고    scopus 로고
    • A polarizable force field for water using an artificial neural network
    • Cho, K.-H.; No, K. T.; Scheraga, H. A. A polarizable force field for water using an artificial neural network J. Mol. Struct. 2002, 641, 77-91
    • (2002) J. Mol. Struct. , vol.641 , pp. 77-91
    • Cho, K.-H.1    No, K.T.2    Scheraga, H.A.3
  • 31
    • 0012032724 scopus 로고    scopus 로고
    • Representation of Intermolecular Potential Functions by Neural Networks
    • Gassner, H.; Probst, M.; Lauenstein, A.; Hermansson, K. Representation of Intermolecular Potential Functions by Neural Networks J. Phys. Chem. A 1998, 102, 4596-4605
    • (1998) J. Phys. Chem. A , vol.102 , pp. 4596-4605
    • Gassner, H.1    Probst, M.2    Lauenstein, A.3    Hermansson, K.4
  • 32
    • 0000735558 scopus 로고    scopus 로고
    • The fitting of potential energy surfaces using neural networks: Application to the study of vibrational levels of H3+
    • Prudente, F. V.; Acioli, P. H.; Soares Neto, J. J. The fitting of potential energy surfaces using neural networks: Application to the study of vibrational levels of H 3+ J. Chem. Phys. 1998, 109, 8801-8808
    • (1998) J. Chem. Phys. , vol.109 , pp. 8801-8808
    • Prudente, F.V.1    Acioli, P.H.2    Soares Neto, J.J.3
  • 33
    • 0141938557 scopus 로고    scopus 로고
    • The use of neural networks for fitting potential energy surfaces: A comparative case study for the H3+ molecule
    • Rocha Filho, T. M.; Oliveira, Z. T.; Malbouisson, L. A. C.; Gargano, R.; Soares Neto, J. J. The use of neural networks for fitting potential energy surfaces: A comparative case study for the H3+ molecule Int. J. Quantum Chem. 2003, 95, 281-288
    • (2003) Int. J. Quantum Chem. , vol.95 , pp. 281-288
    • Rocha Filho, T.M.1    Oliveira, Z.T.2    Malbouisson, L.A.C.3    Gargano, R.4    Soares Neto, J.J.5
  • 34
    • 34948907442 scopus 로고    scopus 로고
    • Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feedforward neural networks. II. Numerical application of the method
    • Malshe, M.; Raff, L. M.; Rockley, M. G.; Hagan, M.; Agrawal, P. M.; Komanduri, R. Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feedforward neural networks. II. Numerical application of the method J. Chem. Phys. 2007, 127, 134105
    • (2007) J. Chem. Phys. , vol.127 , pp. 134105
    • Malshe, M.1    Raff, L.M.2    Rockley, M.G.3    Hagan, M.4    Agrawal, P.M.5    Komanduri, R.6
  • 35
    • 22944464406 scopus 로고    scopus 로고
    • Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks
    • Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks J. Chem. Phys. 2005, 122, 084104
    • (2005) J. Chem. Phys. , vol.122 , pp. 084104
    • Raff, L.M.1    Malshe, M.2    Hagan, M.3    Doughan, D.I.4    Rockley, M.G.5    Komanduri, R.6
  • 36
    • 34547554577 scopus 로고    scopus 로고
    • Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods
    • Agrawal, P. M.; Raff, L. M.; Hagan, M. T.; Komanduri, R. Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods J. Chem. Phys. 2006, 124, 134306
    • (2006) J. Chem. Phys. , vol.124 , pp. 134306
    • Agrawal, P.M.1    Raff, L.M.2    Hagan, M.T.3    Komanduri, R.4
  • 37
    • 67650383862 scopus 로고    scopus 로고
    • Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting
    • Le, H. M.; Huynh, S.; Raff, L. M. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting J. Chem. Phys. 2009, 131, 014107
    • (2009) J. Chem. Phys. , vol.131 , pp. 014107
    • Le, H.M.1    Huynh, S.2    Raff, L.M.3
  • 38
    • 33845324128 scopus 로고    scopus 로고
    • Using neural networks to represent potential surfaces as sums of products
    • Manzhos, S.; Carrington, T., Jr. Using neural networks to represent potential surfaces as sums of products J. Chem. Phys. 2006, 125, 194105
    • (2006) J. Chem. Phys. , vol.125 , pp. 194105
    • Manzhos, S.1    Carrington, T.2
  • 39
    • 44349100946 scopus 로고    scopus 로고
    • Cis → trans, trans → cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting
    • Le, H. M.; Raff, L. M. Cis → trans, trans → cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting J. Chem. Phys. 2008, 128, 194310
    • (2008) J. Chem. Phys. , vol.128 , pp. 194310
    • Le, H.M.1    Raff, L.M.2
  • 40
    • 58149214091 scopus 로고    scopus 로고
    • Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments
    • Darley, M. G.; Handley, C. M.; Popelier, P. L. A. Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments J. Chem. Theory Comput. 2008, 4, 1435-1448
    • (2008) J. Chem. Theory Comput. , vol.4 , pp. 1435-1448
    • Darley, M.G.1    Handley, C.M.2    Popelier, P.L.A.3
  • 41
    • 80053924043 scopus 로고    scopus 로고
    • Molecular Dynamics Investigations of Ozone on an Ab Initio Potential Energy Surface with the Utilization of Pattern-Recognition Neural Network for Accurate Determination of Product Formation
    • Le, H. M.; Dinh, T. S.; Le, H. V. Molecular Dynamics Investigations of Ozone on an Ab Initio Potential Energy Surface with the Utilization of Pattern-Recognition Neural Network for Accurate Determination of Product Formation J. Phys. Chem. A 2011, 115, 10862-10870
    • (2011) J. Phys. Chem. A , vol.115 , pp. 10862-10870
    • Le, H.M.1    Dinh, T.S.2    Le, H.V.3
  • 42
    • 64549148884 scopus 로고    scopus 로고
    • Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks
    • Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks J. Chem. Phys. 2009, 130, 134101
    • (2009) J. Chem. Phys. , vol.130 , pp. 134101
    • Pukrittayakamee, A.1    Malshe, M.2    Hagan, M.3    Raff, L.M.4    Narulkar, R.5    Bukkapatnum, S.6    Komanduri, R.7
  • 43
    • 84861086742 scopus 로고    scopus 로고
    • Modified Feed-Forward Neural Network Structures and Combined-Function-Derivative Approximations Incorporating Exchange Symmetry for Potential Energy Surface Fitting
    • Nguyen, H. T. T.; Le, H. M. Modified Feed-Forward Neural Network Structures and Combined-Function-Derivative Approximations Incorporating Exchange Symmetry for Potential Energy Surface Fitting J. Phys. Chem. A 2012, 116, 4629-4638
    • (2012) J. Phys. Chem. A , vol.116 , pp. 4629-4638
    • Nguyen, H.T.T.1    Le, H.M.2
  • 44
    • 84879112839 scopus 로고    scopus 로고
    • Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks
    • Chen, J.; Xu, X.; Xu, X.; Zhang, D. H. Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks J. Chem. Phys. 2013, 138, 221104
    • (2013) J. Chem. Phys. , vol.138 , pp. 221104
    • Chen, J.1    Xu, X.2    Xu, X.3    Zhang, D.H.4
  • 45
    • 84903362821 scopus 로고    scopus 로고
    • Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems
    • Li, J.; Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems J. Chem. Phys. 2013, 139, 204103
    • (2013) J. Chem. Phys. , vol.139 , pp. 204103
    • Li, J.1    Jiang, B.2    Guo, H.3
  • 46
    • 80053512754 scopus 로고    scopus 로고
    • Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
    • Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations Phys. Chem. Chem. Phys. 2011, 13, 17930-17955
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 17930-17955
    • Behler, J.1
  • 47
    • 84899441459 scopus 로고    scopus 로고
    • Representing potential energy surfaces by high-dimensional neural network potentials
    • Behler, J. Representing potential energy surfaces by high-dimensional neural network potentials J. Phys.: Condens. Matter 2014, 26, 183001
    • (2014) J. Phys.: Condens. Matter , vol.26 , pp. 183001
    • Behler, J.1
  • 48
    • 77949425807 scopus 로고    scopus 로고
    • Potential Energy Surfaces Fitted by Artificial Neural Networks
    • Handley, C. M.; Popelier, P. L. A. Potential Energy Surfaces Fitted by Artificial Neural Networks J. Phys. Chem. A 2010, 114, 3371-3383
    • (2010) J. Phys. Chem. A , vol.114 , pp. 3371-3383
    • Handley, C.M.1    Popelier, P.L.A.2
  • 49
    • 33645518656 scopus 로고    scopus 로고
    • Neural Network Models of Potential Energy Surfaces:Prototypical Examples
    • Witkoskie, J. B.; Doren, D. J. Neural Network Models of Potential Energy Surfaces:Prototypical Examples J. Chem. Theory Comput. 2005, 1, 14-23
    • (2005) J. Chem. Theory Comput. , vol.1 , pp. 14-23
    • Witkoskie, J.B.1    Doren, D.J.2
  • 50
    • 34547842566 scopus 로고    scopus 로고
    • Representing molecule-surface interactions with symmetry-adapted neural networks
    • Behler, J.; Lorenz, S.; Reuter, K. Representing molecule-surface interactions with symmetry-adapted neural networks J. Chem. Phys. 2007, 127, 014705
    • (2007) J. Chem. Phys. , vol.127 , pp. 014705
    • Behler, J.1    Lorenz, S.2    Reuter, K.3
  • 51
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    • Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys. 2011, 134, 074106
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 52
    • 34047127421 scopus 로고    scopus 로고
    • Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
    • Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces Phys. Rev. Lett. 2007, 98, 146401
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 53
    • 33748257982 scopus 로고    scopus 로고
    • A random-sampling high dimensional model representation neural network for building potential energy surfaces
    • Manzhos, S.; Carrington, T., Jr. A random-sampling high dimensional model representation neural network for building potential energy surfaces J. Chem. Phys. 2006, 125, 084109
    • (2006) J. Chem. Phys. , vol.125 , pp. 084109
    • Manzhos, S.1    Carrington, T.2
  • 54
    • 84878682578 scopus 로고    scopus 로고
    • Neural network potentials for metals and oxides - First applications to copper clusters at zinc oxide
    • Artrith, N.; Hiller, B.; Behler, J. Neural network potentials for metals and oxides-First applications to copper clusters at zinc oxide Phys. Status Solidi B 2013, 250, 1191-1203
    • (2013) Phys. Status Solidi B , vol.250 , pp. 1191-1203
    • Artrith, N.1    Hiller, B.2    Behler, J.3
  • 55
    • 79961106334 scopus 로고    scopus 로고
    • High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
    • Artrith, N.; Morawietz, T.; Behler, J. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide Phys. Rev. B 2011, 83, 153101
    • (2011) Phys. Rev. B , vol.83 , pp. 153101
    • Artrith, N.1    Morawietz, T.2    Behler, J.3
  • 56
    • 43249123138 scopus 로고    scopus 로고
    • Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential
    • Behler, J.; Martoňák, R.; Donadio, D.; Parrinello, M. Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential Phys. Rev. Lett. 2008, 100, 185501
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 185501
    • Behler, J.1    Martoňák, R.2    Donadio, D.3    Parrinello, M.4
  • 57
    • 56749176216 scopus 로고    scopus 로고
    • Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations
    • Behler, J.; Martoňák, R.; Donadio, D.; Parrinello, M. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations Phys. Status Solidi B 2008, 245, 2618-2629
    • (2008) Phys. Status Solidi B , vol.245 , pp. 2618-2629
    • Behler, J.1    Martoňák, R.2    Donadio, D.3    Parrinello, M.4
  • 59
    • 77954915385 scopus 로고    scopus 로고
    • Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface
    • Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello, M. Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface Phys. Rev. B 2010, 81, 100103
    • (2010) Phys. Rev. B , vol.81 , pp. 100103
    • Khaliullin, R.Z.1    Eshet, H.2    Kühne, T.D.3    Behler, J.4    Parrinello, M.5
  • 60
    • 84872411264 scopus 로고    scopus 로고
    • Adsorption of Methanethiolate and Atomic Sulfur at the Cu(111) Surface: A Computational Study
    • Seema, P.; Behler, J.; Marx, D. Adsorption of Methanethiolate and Atomic Sulfur at the Cu(111) Surface: A Computational Study J. Phys. Chem. C 2013, 117, 337-348
    • (2013) J. Phys. Chem. C , vol.117 , pp. 337-348
    • Seema, P.1    Behler, J.2    Marx, D.3
  • 61
    • 84882446377 scopus 로고    scopus 로고
    • A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections
    • Morawietz, T.; Behler, J. A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections J. Phys. Chem. A 2013, 117, 7356-7366
    • (2013) J. Phys. Chem. A , vol.117 , pp. 7356-7366
    • Morawietz, T.1    Behler, J.2
  • 62
    • 84882403612 scopus 로고    scopus 로고
    • A Full-Dimensional Neural Network Potential-Energy Surface for Water Clusters up to the Hexamer
    • Morawietz, T.; Behler, J. A Full-Dimensional Neural Network Potential-Energy Surface for Water Clusters up to the Hexamer Z. Phys. Chem. 2013, 227, 1559-1581
    • (2013) Z. Phys. Chem. , vol.227 , pp. 1559-1581
    • Morawietz, T.1    Behler, J.2
  • 63
    • 84857263925 scopus 로고    scopus 로고
    • A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
    • Morawietz, T.; Sharma, V.; Behler, J. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges J. Chem. Phys. 2012, 136, 064103
    • (2012) J. Chem. Phys. , vol.136 , pp. 064103
    • Morawietz, T.1    Sharma, V.2    Behler, J.3
  • 65
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. Approximation by superpositions of a sigmoidal function Math. Control Signal Syst. 1989, 2, 303-314
    • (1989) Math. Control Signal Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 66
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators Neural Networks 1989, 2, 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 67
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. Approximation capabilities of multilayer feedforward networks Neural Networks 1991, 4, 251-257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 69
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors Nature 1986, 323, 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 70
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.; Menhaj, M. Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 1994, 5, 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 71
    • 84984299789 scopus 로고    scopus 로고
    • Adaptive, global, extended Kalman filters for training feedforward neural networks
    • Blank, T. B.; Brown, S. D. Adaptive, global, extended Kalman filters for training feedforward neural networks J. Chemom. 2005, 8, 391-407
    • (2005) J. Chemom. , vol.8 , pp. 391-407
    • Blank, T.B.1    Brown, S.D.2
  • 72
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • Shah, S.; Palmieri, F.; Datum, M. Optimal filtering algorithms for fast learning in feedforward neural networks Neural Networks 1992, 5, 779-787
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 75
    • 4243553426 scopus 로고
    • Density-functional exchange-energy approximation with correct asymptotic behavior
    • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 1988, 38, 3098-3100
    • (1988) Phys. Rev. A , vol.38 , pp. 3098-3100
    • Becke, A.D.1
  • 76
    • 0001629861 scopus 로고
    • Quantum Mechanics of Many-Electron Systems
    • Dirac, P. A. M. Quantum Mechanics of Many-Electron Systems Proc. R. Soc., Ser. A 1929, 123, 714-733
    • (1929) Proc. R. Soc., Ser. A , vol.123 , pp. 714-733
    • Dirac, P.A.M.1
  • 77
    • 5944261746 scopus 로고
    • Density-functional approximation for the correlation energy of the inhomogeneous electron gas
    • Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 1986, 33, 8822-8824
    • (1986) Phys. Rev. B , vol.33 , pp. 8822-8824
    • Perdew, J.P.1
  • 78
    • 33846410438 scopus 로고
    • A Simplification of the Hartree-Fock Method
    • Slater, J. C. A Simplification of the Hartree-Fock Method Phys. Rev. 1951, 81, 385-390
    • (1951) Phys. Rev. , vol.81 , pp. 385-390
    • Slater, J.C.1
  • 79
    • 0000216001 scopus 로고
    • Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
    • Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis Can. J. Phys. 1980, 58, 1200-1211
    • (1980) Can. J. Phys. , vol.58 , pp. 1200-1211
    • Vosko, S.H.1    Wilk, L.2    Nusair, M.3
  • 80
    • 26244461462 scopus 로고    scopus 로고
    • Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
    • Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 2005, 7, 3297-3305
    • (2005) Phys. Chem. Chem. Phys. , vol.7 , pp. 3297-3305
    • Weigend, F.1    Ahlrichs, R.2
  • 82
    • 20344365516 scopus 로고
    • Integral approximations for LCAO-SCF calculations
    • Vahtras, O.; Almlöf, J.; Feyereisen, M. W. Integral approximations for LCAO-SCF calculations Chem. Phys. Lett. 1993, 213, 514-518
    • (1993) Chem. Phys. Lett. , vol.213 , pp. 514-518
    • Vahtras, O.1    Almlöf, J.2    Feyereisen, M.W.3
  • 83
    • 77951680464 scopus 로고    scopus 로고
    • A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    • Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 2010, 132, 154104
    • (2010) J. Chem. Phys. , vol.132 , pp. 154104
    • Grimme, S.1    Antony, J.2    Ehrlich, S.3    Krieg, H.4
  • 84
    • 23444462078 scopus 로고    scopus 로고
    • A post-Hartree-Fock model of intermolecular interactions
    • Johnson, E. R.; Becke, A. D. A post-Hartree-Fock model of intermolecular interactions J. Chem. Phys. 2005, 123, 024101-024101-7
    • (2005) J. Chem. Phys. , vol.123
    • Johnson, E.R.1    Becke, A.D.2
  • 85
    • 84874914216 scopus 로고    scopus 로고
    • Reaction Path Optimization without NEB Springs or Interpolation Algorithms
    • Plessow, P. Reaction Path Optimization without NEB Springs or Interpolation Algorithms J. Chem. Theory Comput. 2013, 9, 1305-1310
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 1305-1310
    • Plessow, P.1
  • 90
    • 36749110571 scopus 로고
    • A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
    • Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters J. Chem. Phys. 1982, 76, 637-649
    • (1982) J. Chem. Phys. , vol.76 , pp. 637-649
    • Swope, W.C.1    Andersen, H.C.2    Berens, P.H.3    Wilson, K.R.4
  • 93
    • 0025418210 scopus 로고
    • Neural networks for self-learning control systems
    • Nguyen, D. H.; Widrow, B. Neural networks for self-learning control systems IEEE Control Systems Magazine 1990, 10, 18-23
    • (1990) IEEE Control Systems Magazine , vol.10 , pp. 18-23
    • Nguyen, D.H.1    Widrow, B.2
  • 95
    • 0013153953 scopus 로고    scopus 로고
    • PythonLabs: Virginia, USA, (accessed 03.04.2015)
    • van Rossum, G.; Drale, F. L. Python Reference Manual; PythonLabs: Virginia, USA, 2001., http://www.python.org (accessed 03.04.2015).
    • (2001) Python Reference Manual
    • Van Rossum, G.1    Drale, F.L.2
  • 96
    • 79952595565 scopus 로고    scopus 로고
    • The NumPy Array: A Structure for Efficient Numerical Computation
    • van der Walt, S.; Colbert, S. C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation Comput. Sci. Eng. 2011, 13, 22-30
    • (2011) Comput. Sci. Eng. , vol.13 , pp. 22-30
    • Van Der Walt, S.1    Colbert, S.C.2    Varoquaux, G.3
  • 97
    • 33845279007 scopus 로고
    • The thermal, aliphatic Claisen rearrangement
    • Ziegler, F. E. The thermal, aliphatic Claisen rearrangement Chem. Rev. 1988, 88, 1423-1452
    • (1988) Chem. Rev. , vol.88 , pp. 1423-1452
    • Ziegler, F.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.