-
2
-
-
5744249209
-
-
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller J. Chem. Phys., vol. 21, p. 1087, 1953.
-
(1953)
J. Chem. Phys
, vol.21
, pp. 1087
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
5
-
-
68949154402
-
Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning
-
C. M. Handley, G. I. Hawe, D. B. Kell, and P. L. A. Popelier, "Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning," Phys. Chem. Chem. Phys., vol. 11, pp. 6365-6376, 2009.
-
(2009)
Phys. Chem. Chem. Phys
, vol.11
, pp. 6365-6376
-
-
Handley, C.M.1
Hawe, G.I.2
Kell, D.B.3
Popelier, P.L.A.4
-
6
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
Apr
-
J. Behler and M. Parrinello, "Generalized neural-network representation of high-dimensional potential-energy surfaces," Phys. Rev. Lett., vol. 98, p. 146401, Apr 2007.
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
7
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
J. Behler, "Atom-centered symmetry functions for constructing high-dimensional neural network potentials," The Journal of Chemical Physics, vol. 134, no. 7, p. 074106, 2011.
-
(2011)
The Journal of Chemical Physics
, vol.134
, Issue.7
, pp. 074106
-
-
Behler, J.1
-
8
-
-
84857263925
-
A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
-
T. Morawietz, V. Sharma, and J. Behler, "A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges," The Journal of Chemical Physics, vol. 136, no. 6, p. 064103, 2012.
-
(2012)
The Journal of Chemical Physics
, vol.136
, Issue.6
, pp. 064103
-
-
Morawietz, T.1
Sharma, V.2
Behler, J.3
-
9
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Jan
-
M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, "Fast and accurate modeling of molecular atomization energies with machine learning," Phys. Rev. Lett., vol. 108, p. 058301, Jan 2012.
-
(2012)
Phys. Rev. Lett
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
10
-
-
84862560607
-
Finding density functionals with machine learning
-
Jun
-
J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K. Burke, "Finding density functionals with machine learning," Phys. Rev. Lett., vol. 108, p. 253002, Jun 2012.
-
(2012)
Phys. Rev. Lett
, vol.108
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.-R.4
Burke, K.5
-
11
-
-
84885045537
-
Machine learning of molecular electronic properties in chemical compound space
-
March. (In Press)
-
G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Muller, and O. A. von Lilienfeld, "Machine learning of molecular electronic properties in chemical compound space," New J. Phys., March 2013. (In Press).
-
(2013)
New J. Phys
-
-
Montavon, G.1
Rupp, M.2
Gobre, V.3
Vazquez-Mayagoitia, A.4
Hansen, K.5
Tkatchenko, A.6
Muller, K.-R.7
Von Lilienfeld, O.A.8
-
12
-
-
33847059431
-
Support vector machines an introduction
-
(L. Wang, ed.), of Studies in Fuzziness and Soft Computing, Springer Berlin/Heidelberg, 10.1007/10984697 1
-
V. Kecman, "Support vector machines an introduction," in Support Vector Machines: Theory and Applications (L. Wang, ed.), vol. 177 of Studies in Fuzziness and Soft Computing, pp. 605-605, Springer Berlin/Heidelberg, 2005. 10.1007/10984697 1.
-
(2005)
Support Vector Machines: Theory and Applications
, vol.177
, pp. 605-605
-
-
Kecman, V.1
-
13
-
-
79951822517
-
Learning with support vector machines
-
C. Campbell and Y. Ying, "Learning with support vector machines," Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 5, no. 1, pp. 1-95, 2011.
-
(2011)
Synthesis Lectures on Artificial Intelligence and Machine Learning
, vol.5
, Issue.1
, pp. 1-95
-
-
Campbell, C.1
Ying, Y.2
-
16
-
-
4043137356
-
A tutorial on support vector regression
-
Aug
-
A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statistics and Computing, vol. 14, pp. 199-222, Aug. 2004.
-
(2004)
Statistics and Computing
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
18
-
-
70450206724
-
-
version, a package for electronic structure modeling
-
GAUSSIAN 09, version 2009, a package for electronic structure modeling, see http://www.gaussian.net.
-
(2009)
GAUSSIAN 09
-
-
-
20
-
-
77958086086
-
-
A. Vítek, R. Kalus, and I. Paidarová Phys. Chem. Chem. Phys., vol. 12, p. 13657, 2010.
-
(2010)
Phys. Chem. Chem. Phys
, vol.12
, pp. 13657
-
-
Vítek, A.1
Kalus, R.2
Paidarová, I.3
-
21
-
-
0038895405
-
Training nu-support vector regression: Theory and algorithms
-
C. C. Chang and C. J. Lin, "Training nu-support vector regression: theory and algorithms," Neural Computation, vol. 14, pp. 1959-1977, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1959-1977
-
-
Chang, C.C.1
Lin, C.J.2
|